Measurement of polarization observables in $\pi^0\pi^0$ photoproduction off the proton with the CBELSA/TAPS experiment

Tobias Seifen Philipp Mahlberg

for the CBELSA/TAPS collaboration

Helmholtz-Institut für Strahlen- und Kernphysik

University of Bonn

May 26, 2015

Photoproduction cross sections

- AIM: Good understanding of the baryon excitation spectrum
- importance of multi-meson final states increases with E_γ

- Compared to $\gamma p \rightarrow p \pi^+ \pi^-$: less background amplitudes in $p \pi^0 \pi^0$
 - no diffractive $\rho(770)$ production
 - no direct $\Delta^{++}\pi^-$ production
 - fewer Born-terms, t-channel exchanges
- \rightarrow higher sensitivity on baryon resonances
- exhibits sequential decays
- ⇒ resolve PWA ambiguities: polarization observables needed!

▶ The Crystal Barrel Experiment @ ELSA

► The Crystal Barrel Experiment @ ELSA

• Event selection $\gamma \mathbf{p} \to \mathbf{p} \pi^0 \pi^0$

- detector signature: 4 neutral hits \longrightarrow reconstructed γ_i
 - $1 \ \text{charged hit} \quad \longrightarrow \quad \text{direction of } p$
- angular cuts: $\varphi(\mathbf{p}, \sum \gamma_i), \vartheta^{\mathsf{CMS}}(\mathbf{p}, \sum_i \gamma_i)$
- missing mass cut: $\gamma p \rightarrow 4\gamma X$

+ kinematic fit:

- eliminate combinatorial background
- cut on confidence level: CL > 0.1
- anti cut on $p\pi^0\eta$ final state

► Dilution factor *f*

Carbon-subtraction Method:

- target material: $C_4H_9OH \rightarrow$ target contains bound, unpolarizable protons
- dilution factor: $f = \frac{N_{\text{free}}}{N_{\text{total}}}$
- cuts favor free protons:
- \longrightarrow experimental determination via dedicated carbon runs

► Dilution factor *f*

 $f(E_{\gamma}, \cos \vartheta_{\pi^0\pi^0}^{\mathsf{CMS}})$

Carbon-subtraction Method:

Polarization observables in the 2-body approach

- back-to-back in production plane:
 - 1 recoil particle
 - **2** quasi-particle *q*

 \Rightarrow 2-body kinematics

Pol. obs. of single meson photoproduction $\mathcal{O}=\mathcal{O}(\textit{E}_{\gamma},\,artheta)$

Photon pol.		Target Pol. Axis			$d\sigma d\sigma [1 S S = (2,4)]$
		x	у	Z	$\frac{1}{\mathrm{d}\Omega} = \frac{1}{\mathrm{d}\Omega} \cdot \left[1 - \delta_{\ell} \sum \cos(2\phi)\right]$
unpolarized	σ		Т	_	$+ \Lambda_x \cdot \left(-\delta_\ell \ H \sin(2\phi) + \delta^{\odot} \ F ight)$
linear	_Σ	- <i>H</i>	-P	G	$+\Lambda_{y}\cdot\left(-\delta_{\ell}P\cos(2\phi)+T ight)$
circular		F		-E	$-\mathbf{\Lambda}_{\mathbf{z}}\cdot\left(-\delta_{\ell}\ \mathbf{G}\ \sin(2\phi)+\delta^{\odot}\ \mathbf{E}\right)\right]$

I. S. Barker, A. Donnachie, J. K. Storrow, Nucl. Phys. B95, 347 (1975)

8/13

9/13

▶ Beam-Target asymmetries *P* and *H*

► 3-body kinematics

$$\mathcal{O} = \mathcal{O}(\textit{E}_{\gamma}, artheta, \textit{m}_{\mathsf{decay}}, arphi^*, artheta^*)$$

Photon Pol.		Target Pol. Axis		
		x	У	Z
unpolarized	σ	P_x	P_{y}	P_z
linear sin(2 ϕ)	I ^s	P_x^s	P_{v}^{s}	P_z^s
linear $\cos(2\phi)$	I ^c	P_x^c	P_{y}^{c}	P_z^c
circular	<i>I</i> [⊙]	P_x^{\odot}	P_y^{\odot}	P_z^{\odot}

W. Roberts, T. Oed, Phys. Rev. C 71 (2005)

- production plane: γ and recoil particle
- decay plane: remaining two particles
- \Rightarrow 5-dimensional problem

symmetry properties:

•
$$\mathcal{O}$$
 odd/even in ϕ^* :
 $P_x(2\pi - \phi^*) = -P_x(\phi^*)$
 $P_y(2\pi - \phi^*) = +P_y(\phi^*)$

• if identical particles in decay plane: $\mathcal{O}(\phi^*) = \mathcal{O}(\phi^* + \pi)$

▶ 3-body polarization observables P_X and P_Y

▶ 3-body polarization observables P_X and P_Y

▶ First glimpse on *E*

Summary

- Understanding the nucleon excitation spectrum: Polarization observables needed
- Crystal Barrel experiment ideally suited to measure neutral multi-meson final states

polarization data shown for $p\gamma \rightarrow p\pi^0\pi^0$:

- 2-body approach: T, P, H, E
- 3-body approach: P_X, P_Y

... more to come!

 \longrightarrow new, crucial information for PWA

THANK YOU FOR YOUR ATTENTION!

supported by: Deutsche Forschungsgemeinschaft DFG within SFB/TR16

Backup slides

► Double Polarization Experiment

linear beam polarization: coherent bremsstrahlung with 3.2 GeV unpolarized electrons circular beam polarization: helicity transfer from 2.4 GeV

polarized electrons

T. Seifen, Ph. Mahlberg

Polarization observables in $\pi^0 \pi^0$ photoproduction with CBELSA/TAPS

▶ P_X and P_Y in $p\gamma \rightarrow p(\pi^0\pi^0)$

T. Seifen, Ph. Mahlberg Polarization observables in $\pi^0 \pi^0$ photoproduction with CBELSA/TAPS

16 / 13

▶ P_X and P_Y in $p\gamma \rightarrow p(\pi^0\pi^0)$

▶ P_X and P_Y in $p\gamma \to (p\pi^0)\pi^0$

T. Seifen, Ph. Mahlberg Polarization observables in $\pi^0 \pi^0$ photoproduction with CBELSA/TAPS

17/13