Bonn-Gatchina partial wave analysis of two meson photoproduction reactions

V.A. Nikonov

HISKP (Bonn), PNPI (Russia)

NSTAR 2015, Osaka, May 26, 2015

- The study of the reactions $\gamma \to p\pi^0\pi^0$ and $\gamma \to p\pi^0\eta$ opens a good chance to search for the missing resonances and to study sequential decays of high-mass resonances.
- Polarization observables are important in photoproduction to disentangle the multitude of contributing resonances.
- One can define branching ratios to different decay modes.

The Bonn Gatchina approach

The helicity-dependent amplitude for photoproduction of the final state *b* in one partial wave is calculated as P-vector:

$$a_b^h = P_a^h (I - i\rho K)_{ab}^{-1}$$

where K is called K matrix, ho the phase space, and where

$$P^h_a = \sum_lpha rac{A^h_lpha g^lpha_a}{M^2_lpha - s} + F_a \, .$$

and A^h_{α} is photo-coupling of the K-matrix pole α and F_a is a non-resonant transition. In the BnGa analysis, the K-matrix has up to 9 channels and up to 4 poles. Resonances and background contributions are combined in a K matrix

$$K_{ab} = \sum_lpha rac{g^lpha_a g^lpha_b}{M^2_lpha - s} + f_{ab} \, .$$

The background terms f_{ab} can be arbitrary functions of s. We use

$$f_{ab} = ext{constant}\{ ext{mostly}\}; \quad f_{ab} = rac{(a+b\sqrt{s})}{(s-s_0)} \ \{(I)J^P = (rac{1}{2})rac{1}{2}^-\}$$

The angular momentum barrier q^L is suppressed by Blatt and Weisskopf form factors.

Resonances with total momentum J up to $\frac{7}{2}$; t – and u – channel exchanges; K – matrix up to 9 channels; dispersion corrections for meson-nucleon loops.

$$N^*, \Delta^* \rightarrow \Delta (1232) \frac{3}{2}^+ \pi^0 \rightarrow p \pi^0 \pi^0$$

$$N^*, \Delta^* \rightarrow N(1440) \frac{1}{2}^+ \pi^0 \rightarrow p \pi^0 \pi^0$$

$$N^*, \Delta^* \rightarrow N(1520) \frac{3}{2}^- \pi^0 \rightarrow p \pi^0 \pi^0$$

$$N^*, \Delta^* \rightarrow N(1535) \frac{1}{2}^- \pi^0 \rightarrow p \pi^0 \pi^0$$

$$N^*, \Delta^* \rightarrow N(1680) \frac{5}{2}^+ \pi^0 \rightarrow p \pi^0 \pi^0$$

$$N^* \rightarrow N \sigma \rightarrow p \pi^0 \pi^0$$

$$N^* \rightarrow P f_0(980) \rightarrow p \pi^0 \pi^0$$

$$N^*, \Delta^* \rightarrow N(1535) \frac{1}{2}^- \pi^0 \rightarrow p \pi^0 \eta$$

$$\Delta^* \rightarrow \Delta (1232) \frac{3}{2}^+ \eta \rightarrow p \pi^0 \eta$$

$$N^* \rightarrow P a_0(980) \rightarrow p \pi^0 \eta$$

The data base

We use data on photoproduction, RE and IM of the πN elastic scattering amplitude, and inelastic reactions:

		$rac{d\sigma}{d\Omega}$	Σ	$oldsymbol{E}$	G	T	\boldsymbol{P}	H	C_x	$C_{\boldsymbol{z}}$	O_x	O_z	CL	AS, CBE	ELSA, MAMI
$\gamma p o \pi^0 p$		X	x	X	x	x	x	x			X	x	$\gamma p ightarrow \pi^0 \pi^0 p$		
$\gamma p ightarrow \pi^- n$		x	x	X	x	x	X	x					($ec{\gamma}p o \pi^0\pi^0 p$)		
$\gamma p o \eta p$		X	X	X	x	x	X	x					$\gamma p o \pi^+\pi^- p$		
$\gamma p o K^+ \Lambda$		X	X			x	X		x	x	X	X	$ $ $(\bar{\gamma}$	$\dot{p} \rightarrow c$	$\pi^+\pi^-p$)
$\gamma p o K^+ \Sigma^0$		X	X			x	X		x	x	X	X		$\gamma p ightarrow$	$\pi^0 \eta p$
$\gamma p o K^0 \Sigma^+$		X	X				X							$\langle ec{\gamma} p ightarrow$	$\pi^0\eta p$)
$\gamma p ightarrow \omega p$		x	X	X	x								$ $ (γp) e	vent ba	sed likelihood
$\gamma p o K^{*+} \Lambda$		X											$(ec{\gamma} p$) fit to c	listributions
S_1	.1	S_{31}	I	7 11	P_{31}		π^{-}	$p \rightarrow$	ηn		de	$\sigma/d\Omega$			
P_1	.3	P_{33}	Ľ) ₁₃	D_{33}		$\pi^+p o K^+\Sigma^+$		$d \epsilon$	$\sigma/d\Omega$	P	$oldsymbol{eta}$			
D_{2}	15	F_{15}	F	35	F_{37}		π^{-}	$\pi^- p o K^0 \Lambda(\Sigma^0)$		$d \epsilon$	$\sigma/d\Omega$	P	$oldsymbol{eta}$		
F_1	7	G_{17}	G	19	H_{19}		$\pi^- p o \pi^0 \pi^0 p$		ev	ent bas	ased likelihood				

The fit minimizes the total log likelihood defined by

$$-\ln \mathcal{L}_{ ext{tot}} = (rac{1}{2}\sum w_i\chi_i^2 - \sum w_i\ln \mathcal{L}_i) \ rac{\sum N_i}{\sum w_iN_i}$$

Main contributions to the total cross section of $\gamma p \to p \pi^0 \pi^0$

Main contributions to the total cross section of $\gamma p \to p \pi^0 \eta$

Mass distributions $\gamma p \rightarrow p \pi^0 \pi^0$

Angular distributions $\gamma p \rightarrow p \pi^0 \pi^0$

Mass distributions $\gamma p \rightarrow p \pi^0 \eta$

With three particles in the final state new polarization observables can be defined.

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_0 \{1 + P_l[I^s(\phi^*)\sin(2\phi) + I^c(\phi^*)\cos(2\phi)]\}.$$
$$I^c(\phi^*) = I^c(2\pi - \phi^*); \quad I^s(\phi^*) = -I^s(2\pi - \phi^*).$$

Polarization observables

Polarization observables: red points: CBELSA/TAPS data, black curve: BnGa main PWA fit, green curve: BnGa PWA fit without $N(1900)3/2^+$.

Polarization observables

Polarization observables: red points: CBELSA/TAPS data, black curve: BnGa main PWA fit, green curve: BnGa PWA fit without $N(1900)3/2^+$.

$N(1720)3/2^+$ pole parameters		
M_{nole} 1670±25	Γ_{nole}	430±100
$A^{1/2}$ 0.115±0.045	Phase	(0 \pm 35) $^{\circ}$
$A^{3/2}$ 0.140±0.040	Phase	(65±35) ⁰
$N(1720)3/2^+$ transition residues		phase
$\pi N \rightarrow \pi N$	26 \pm 10 (MeV)	-(100 \pm 25) $^{\circ}$
$2(\pi N \rightarrow \Delta(1232)\pi_{L=1})/\Gamma$	28±9%	(95 \pm 30) $^{\circ}$
$2(\pi N \to \Delta(1232)\pi_{L=3})/\Gamma$	7±5%	not def.
$2 (\pi N o N \sigma) / \Gamma$	8±4%	-(110±35)
$2(\pi N \rightarrow N(1520)\pi)/\Gamma$	5±4%	not def.
$(\gamma p)^{1/2} \rightarrow \Delta(1232)\pi L = 1$	50±20 10 ⁻³	(120 \pm 40) $^{\circ}$
$(\gamma p)^{1/2} \rightarrow \Delta(1232)\pi_{L=3}$	14 \pm 8 10^{-3}	not def.
$(\gamma p)^{1/2} \to N\sigma$	12 \pm 6 10^{-3}	-(80 \pm 40) $^{\circ}$
$(\gamma p)^{1/2} \to N(1520)\pi$	10 \pm 7 10^{-3}	not def.
$(\gamma p)^{3/2} \to \Delta(1232)\pi_{L=1}$	65 \pm 30 10^{-3}	-(160 \pm 40) $^{\circ}$
$(\gamma p)^{3/2} \rightarrow \Delta(1232)\pi_{L=3}$	15 \pm 11 10^{-3}	not def.
$(\gamma p)^{3/2} \to N\sigma$	14 \pm 8 10^{-3}	-(10 \pm 45) $^{\circ}$
$(\gamma p)^{3/2} \rightarrow N(1520)\pi$	11 \pm 10 10^{-3}	not def.
$\gamma p \to \Delta(1232)\pi_{L=1} E_{1+}$	30 \pm 16 10^{-3}	-(95 \pm 35) $^{\circ}$
$\gamma p \rightarrow \Delta(1232)\pi_{L=3} E_{1+}$	8 \pm 6 10^{-3}	not def.
$\gamma p \rightarrow N\sigma$ E_{1+}	$6 \pm 4 10^{-3}$	(60 \pm 40) $^{\circ}$
$\gamma p \rightarrow N(1520)\pi \qquad E_{1+}$	5 \pm 5 10^{-3}	not def.
$\gamma p \rightarrow \Delta(1232)\pi_{L=1} M_{1+1}$	70 \pm 40 10^{-3}	-(10 \pm 40) $^{\circ}$
$\gamma p \rightarrow \Delta(1232)\pi_{L=3} M_{1+}$	18 \pm 12 10^{-3}	not def.
$\gamma p \rightarrow N \sigma \qquad M_{1+}$	15 \pm 10 10^{-3}	(145 \pm 45) $^{\circ}$
$\gamma p \rightarrow N(1520)\pi \qquad M_{1+}$	12 \pm 10 10^{-3}	not def.
$N_{3/2+}^{}\left(1720 ight)$ Breit-Wigner parameters		
$M_{BW}^{'}$ 1690±30	Γ_{BW}	420 \pm 80
$Br(\pi N)$ 11±4%	$Br(N\sigma)$	8±6%
Br($\Delta(1232)\pi_{L=1}$) 62 \pm 15%	Br($\Delta(1232)\pi_{L=3}$)	6±6%
Br($N(1520)\pi$) 3±2%	$Br(N(1440)\pi)$	<2%
$A_{BW}^{1/2}$ 0.115 \pm 0.045	$A_{BW}^{3/2}$	0.135±0.040

$\Delta(1900)1/2^-$

 $\Delta(1900)1/2^-$ pole parameters 1845±20 M_{pole} Γ_{pole} 295 ± 35 $A^{1/2}$ 0.064±0.015 Phase (60±20)° $\Delta(1900)1/2^-$ transition residues phase $\pi N \to \pi N$ -(115±20)° 11 \pm 2 (MeV) $2(\pi N \to \Delta(1232)\pi)/\Gamma$ (105±25)° 18±10% $2(\pi N \rightarrow N(1440)\pi)/\Gamma$ (115±30)° 11±6% $2(\pi N \to N(1520)\pi)/\Gamma$ 6±3% not def. $\gamma p \to \Delta(1232)\pi$ E_{0+} **14±7** 10^{-3} **(45±25)**° $\gamma p \to N(1440)\pi$ E_{0+} $9\pm 6 \ 10^{-3}$ (50±30)° $4\pm 2\ 10^{-3}$ $\gamma p \rightarrow N(1520)\pi = E_{0+}$ not def.

 $\Delta(1900)1/2^-$ Breit-Wigner parameters

M_{BW}	1840 \pm 20	Γ_{BW}	295±30
Br(πN)	7±2%	Br($\Delta(1232)\pi$)	50±20%
Br($N(1440)\pi$)	20±12%	Br($N(1520)\pi$)	6±4%
$A_{BW}^{1/2}$	0.065±0.015		

	$N\pi$	L	$\Delta \pi L <$	$\pi L < J \qquad \Delta$		L > J	$N(1440)\pi L$		$N(1520)\pi~L$		$N(1535)\pi L$		$N(1680)\pi L$		$N\sigma$
$N(1535)1/2^{-}$	52 \pm 5	0	x		2.5±1.5	2	12±8	0	-	1	-	1	-	2	6±4
$N(1520)3/2^{-1}$	61 ± 2	2	19±4	0	9±2	2	<1	2	-	1	-	1	-	2	< 2
N(1650)1/2-	51 \pm 4	0	x		12±6	2	16±10	0	-	1	-	1	-	2	10±8
$N(1700)3/2^{-1}$	15 \pm 6	2	65 ± 15	0	9±5	2	7±4	2	<4	1	<1	1	-	2	8±6
$N(1675)5/2^{-1}$	41 ± 2	2	30±7	2	-	4	-	2	-	1	-	3	-	0	5±2
$\Delta(1620)1/2^{-1}$	28±3	0	x		62 ± 10	2	6±3	0	-	1	-	1	-	2	x
$\Delta(1700)3/2^{-1}$	22 ± 4	2	20 \pm 15	0	10±6	2	<1	2	3±2	1	<1	1	-	2	x
$N(1720)3/2^+$	11±4	1	62 \pm 15	1	6±6	3	<2	1	3±2	0	<2	2	-	1	8±6
$N(1680)5/2^+$	62 ± 4	3	7±3	1	10±3	3	-	3	<1	2	-	2	-	1	14±5
$\Delta(1910)1/2^{+}$	12 \pm 3	1	x		50 \pm 16	1	6±3	1	-	0	5±3	2	-	3	x
$\Delta(1920)3/2^{+}$	8±4	1	18±10	1	58±14	3	< 4	1	< 5	0	< 2	2	-	1	x
$\Delta(1905)5/2^+$	13 \pm 2	3	33 ± 10	1	-	3	-	3	-	2	< 1	2	10±5	1	x
$\Delta(1950)7/2^+$	46±2	3	5±4	3	-	5	-	3	-	2	-	4	6±3	1	x
$N(1880)1/2^+$	6±3	1	x		30±12	1	-	1	-	2	8±4	0	-	3	25±15
$N(1900)3/2^+$	3±2	1	17±8	1	33±12	3	<2	1	15±8	0	7±3	2	-	1	4±3
$N(2000)5/2^+$	8±4	3	22 ± 10	1	34±15	3	-	1	21±10	2	-	2	16±9	1	10±5
$N(1990)7/2^+$	1.5 ± 0.5	3	48±10	3	-	5	<2	1	<2	1	<2	4	-	1	-
$N(1990)7/2^+$	2±1	3	16±6	3	-	5	<2	1	<2	1	<2	4	-	1	-
$N(1895)1/2^{-}$	2.5 ± 1.5	0	x		7±4	2	8±8	0	-	1	-	1	-	2	18±15
$N(1875)3/2^{-1}$	4±2	2	14±7	0	7±5	2	5±3	2	< 2	1	<1	1	-	2	45±15
$\Delta(1900)1/2^{-1}$	7±2	0	x		50±20	2	20±12	0	6±4	1	-	1	-	2	x
$\Delta(1940)3/2^{-1}$	2±1	0	46 \pm 20	0	12±7	2	7±7	2	4±3	1	8±6	1	-	2	x
$N(2120)3/2^{-}$	5±3	2	50 \pm 20	0	20±12	2	10±10	2	15±10	1	15±8	1	-	2	11±4
$N(2060)5/2^{-1}$	11±2	2	7±3	2	-	4	9±5	2	15±6	1	-	3	15±7	0	6±3
$N(2190)7/2^{-}$	16 \pm 2	4	25 \pm 6	2	-	4	-	4	-	3	-	3	-	2	6±3
$N(1710)1/2^+$	5±3	1	x		7±4	1	30 ± 10	1	<2	2	-	0	-	3	55±15
$N(1710)1/2^+$	5±3	1	x		25 ± 10	1	<5	1	<2	2	15±6	0	-	3	10±5
$N(2100)1/2^+$	16 \pm 5	1	x		10±4	1	-	1	<2	2	30±4	0	-	3	20±6

Summary and future plans

- High statistical data on the reactions $\gamma \to p\pi^0\pi^0$ and $\gamma \to p\pi^0\eta$ with E_{γ} up to 2.5 GeV were analysed with the good description
- Branching ratios of decays to different modes were calculated
- Polarization observables show the evidence of $N(1900)3/2^+$
- Analysis of charged data is started
- Particularly interesting is the observation that the symmetry properties of the wave functions of resonances have a significant impact on the decay modes. This observation implies that the high-mass resonances must have a three-particle component in their wave functions.
- More polarization observables can be fitted (P. Mahlberg talk)