The performance study of an electro-magnetic calorimeter for the LEPS2/BGOegg experiment

Yuji Matsumura for the LEPS2/BGOegg collaboration

Research Center for Electron Photon Science, Tohoku Univ.

May 26, 2015

Contents

physics motivation

- •LEPS2/BGOegg experiment
- •energy calibration of BGOegg
- •timing calibration of BGOegg
- summary

η' mesic nucleus

- An η' meson has larger mass than other pseudo scalar mesons due to U_A(1) anomaly.
 - → The mass of η' meson is expected to decrease at the nuclear density.
- The decrease of the mass will cause a strong attractive potential in a nucleus.
- Absorption in a nucleus is estimated to be small.
 - \rightarrow Bound state of an η' and a nucleus is expected.
 - : η' mesic nucleus

NSTAR2015

(based on NJL model + KMT interaction)

Search for an η' mesic nucleus

• η' mesic nuclei are searched for in the missing energy spectrum of forward going protons in $C(\gamma, p)\eta'X$ reaction.

Nagahiro et al., PRC74, 045203 ,2006

• There are a lot of background events with only proton detection. (multi π production etc.) S/N ≈ 0.005

 \rightarrow Tag of final state to reduce background.

Search for an η' mesic nucleus

• Signal events are tagged to reduce background.

- TOF-RPCs
 - forward proton detection
 - 12.5 m flight length
 - forward 6.8° coverage
 - ~ 80 ps time resolution
- missing energy resolution $\sim 20 \text{ MeV } @ E_{\gamma} = 2 \text{ GeV}$

• Electro-magnetic calorimeter **BGOegg**

NSTAR2015

: γ (and a nucleon) detection in final state

This talk : calibration status and performance of BGOegg

BGOegg calorimeter

- 1320 BGO crystals
- polar angle : 24° ~ 144° azimutial angle : 360°
- homogenious
- no housing material
- energy resolution : 1.3% @ 1GeV
- position resolution : 3.1mm @ 1GeV

Energy measurement

- energy deposit for a crystal $E_i = \alpha_i (A_i - A_{0i})$
 - α_i : gain factor
 - A_i : ADC value for crystal i
 - A_{0i} : pedestal value
- clustering
 - Crystals in which photon energy was deposited is put together into a cluster.
 - Sum up energy deposit of all crystals in a cluster to reconstruct the photon energy.
 - 2γ invariant mass

Energy calibration

NSTAR2015

•decide gain factor α by successive approximation

1: get mean values of π^0 peak m_i in $\gamma\gamma$ invariant mass distribution for each crystal ($i = 1 \sim 1320$)

2: adjust gain factors

$$\alpha_i \to \alpha_i \left(\frac{m_{\pi}}{m_i}\right)$$

 $(m_{\pi} = 134.977 \text{ MeV}: \pi^0 \text{ mass})$

- 3 : reconstruct $\gamma\gamma$ invariant mass distribution using new gain factors
 - iterate 1 \sim 3 until converged

Check convergence

$$\chi^2 = \sum_{i=1}^{1320} \left(\frac{m_i - m_\pi}{\delta m_i} \right)^2$$

 m_i : mean value of π^0 peak m_{π} : π^0 mass δm_i : error of m_i

for crystal i

• After convergence , the mean values of π^0 peaks are within $m_{\pi} \pm 0.05 \text{ MeV}$ for all crystals

In search for an η' mesic nucleus, ~99% of background events of multi-pi production can be eliminated by tagging η .

2γ invariant mass distribution

• γ energy resolution **Comparison of resolution Crystal Barrel BGOegg** TAPS • 1320 BGO crystals • 1230 CsI(Tl) crystals • 528 BaF crystals • 24°~ 144° • $30^{\circ} \sim 168^{\circ}$ • $4.5^{\circ} \sim 30^{\circ}$ 0.1 $\frac{\sigma}{E_{\rm p}} = \frac{0.79 \ \%}{\sqrt{E_{\star}}} + 1.80 \ \%$ 0.09 0.06 0.08 7 σ(Ε) / Ε_{peak} 田0.07 6 OE/ Resolution 0.06 5(E)/E [%] 5 EGS-simulation a0.04 3 0.02 2 <u>0.59 %</u> + 1.91 % 0.02 1 0.01 0 0 200 800 1000 120(600 0.2 0.6 0.8 0 0.4 0 E [MeV] 100 200 300 400 500 600 700 800 900 incident photon energy [GeV] Incident Momentum (MeV) (E.Aker et al., NIMA, 321(1992), 69) (A.R. Gabler et al., NIMA , 346(1994), 168) 1.3 % @ 1 GeV 2.5 % @ 1 GeV

2.5 % @ 1 GeV

Comparison of resolution

BGOegg

- 1320 BGO crystals
- 24°~ 144°

Crystal Barrel

- 1230 CsI(Tl) crystals
 20° 168°
 - $30^{\circ} \sim 168^{\circ}$

• π^0 mass resolution

($\gamma\gamma$ invariant mass , overall)

TAPS

• 528 BaF crystals
• 4.5° ~ 30°

: The inconsistency of π^0 , η peak position is caused by energy leakage. \rightarrow Check of the leakage effect by MC simulation.

Energy leakage

- When reconstructing a cluster of a gamma hit , a few % of energy leaks out of the cluster.
- Leaked energy ratio $\Delta E / E$ was estimated by MC simulation.

Timing calibration

- Timing information
 - event selection
 - RF separation (2ns)
 - Timing information independent of crystal and energy is required.
 - → Timing calibration was performed so that gamma timing became 0.
- Pulse height time walk correlation
 - Correlation between ADC and timing
 - : timewalk effect

Timing calibration

slewing correction

•fitting function

$$t = t_0 - \alpha \tanh(\beta(A - A_0)) - \gamma(A - A_0))$$

•timing resolution

- timing difference distribution between 2γ s from the same π^0
 - : $\sigma = 0.32 \text{ ns} (E_{\gamma} > 200 \text{ MeV})$
- timing resolution for a single crystal
 - $\sigma/\sqrt{2} = 0.23$ ns

NSTAR2015

- \rightarrow RF bunches can be separated.
 - accidental hits (ex. cosmic ray)

can almost be eliminated.

Summary

- •We are aiming to search for an η' mesic nucleus in the LEPS2/BGOegg experiment.
- •The electro-magnetic calorimeter BGOegg is used to detect γ s and identify mesons in final states.
- •Energy calibration of BGOegg was performed and high mass resolution of 6.7 MeV(π^0), 14.4 MeV(η) was achieved.
- •Timing calibration of BGOegg was performed and timing resolution of 0.23 ns for $E_{\gamma} > 200$ MeV was achieved. This is enough for RF separation and elimination of accidental hits.

backup

Experimental setup

Gain factor and temperature

•run dependence of α and temperature

