Strange and nonstrange baryon spectra in the interacting qD model

J. Ferretti Università La Sapienza, Roma, Italy <u>H. Garcia Tecocoatzi</u> & E. Santopinto Università di Genova & INFN, Italy

Introduction

Constituent qD models: why?

- Concept of constituent diquark (D)
- Baryons as qD bound states
- Scalar & axial-vector diquarks
- Problem of the missing resonances

Interacting qD model

- Model Hamiltonian
- Nonstrange spectrum & missing resonances in the model
- Strange spectrum

qD model

- Diquark
- Two strongly correlated quarks (S wave)
- For simplicity, treated as a point-like object (internal spatial WF neglected)
- Baryon in 1_c color representation \rightarrow diquark in bar- 3_c
- Diquark WF: $\square \otimes \square = \square \oplus \square \Psi_D$ (spin-flavor) antysymmetric $6 \otimes 6 = 15 \oplus 21$ Ψ_D (spin-flavor) antysymmetric \rightarrow 15 (A) repr. not present

• Problem of missing resonances

Scalar & axial-vector diquarks

21 SU(6)_{sf} representation

- Decomposed in SU(2)_s x SU(3)_f
- [bar-3,0] & [6,1] representations. Notation: [flavor,spin]

"Good" & "bad" diquarks

- According to OGE-calculations, [bar-3,0] is energetically favored [Wilczek, Jaffe]
- [bar-3,0]: good (scalar) diquark
- [6,1]: bad (axial-vector) diquark

Problem of missing resonances

3-quark QMs

- Excessive number of th. states (much more than experimental ones)
- Several experiments (CLAS, CB-ELSA, TAPS, GRAAL, SAPHIR, etc.) provided no evidence for these states.
- Possible explanation: resonances weakly coupled to the single pion, may decay in 2 (or more) pions/other mesons.

qD models

- The number of missing resonances decreases notably
- 15 representation for diquark is neglected

Evidences of diquark correlations • Regge behavior of hadrons

Baryons arranged in rotational Regge trajectories (J= α + α 'M2) with the same slope of the mesonic ones.

• $\Delta I = \frac{1}{2}$ rule in weak nonleptonic decays

Neubert and Stech, Phys. Lett. B 231 (1989) 477; Phys. Rev. D 44 (1991) 775

[•] Regularities in parton distribution functions and in spindependent structure functions

Close and Thomas, Phys. Lett. B **212** (1988) 227

Regularities in Λ(1116) and Λ(1520) fragmentation functions
 Jaffe, Phys. Rept. 409 (2005) 1 [Nucl. Phys. Proc. Suppl. 142 (2005) 343]
 Wilczek, hep-ph/0409168

Any interaction that binds π and ρ mesons in the rainbow-ladder approximation of the DSE will produce diquarks

Cahill, Roberts and Praschifka, Phys. Rev. D 36 (1987) 2804

Indications of diquark confinement

Bender, Roberts and Von Smekal, Phys. Lett. B 380 (1996) 7

Non-rel. Interacting qD model E. Santopinto, PRC72, 022201 (2005)

Hamiltonian

$$H = \frac{p^2}{2m} - \frac{\tau}{r} + \beta r + [B\delta_{S_{12},1} + C\delta_0] + (-1)^{l+1} 2Ae^{-\alpha r} [(\vec{s}_{12} \cdot \vec{s}_3) + (\vec{t}_{12} \cdot \vec{t}_3) + (\vec{s}_{12} \cdot \vec{s}_3)(\vec{t}_{12} \cdot \vec{t}_3)]$$

- Non-rel. Kinetic energy + Coulomb + linear confining terms
- Splitting between scalar & axial-vector diquarks
- Exchange potential
- Parameters fitted to nonstrange baryon spectrum

Rel. Interacting qD model

J. Ferretti, E. Santopinto & A. Vassallo, PRC83, 065204 (2011)

Model

- Relativistic extension of the previous model (point-form formalism).
- Hamiltonian:

$$\begin{split} M &= E_0 + \sqrt{q^2 + m_1^2} + \sqrt{q^2 + m_2^2} + M_{\rm dir}(r) \\ &+ M_{\rm cont}(r) + M_{\rm ex}(r), & M_{\rm dir}(r) = -\frac{\tau}{r}(1 - e^{-\mu r}) + \beta r. \\ M_{\rm ex}(r) &= (-1)^{l+1} e^{-\sigma r} [A_S(\vec{s}_1 \cdot \vec{s}_2) + A_I(\vec{t}_1 \cdot \vec{t}_2) \\ &+ A_{SI}(\vec{s}_1 \cdot \vec{s}_2)(\vec{t}_1 \cdot \vec{t}_2)], \\ M_{\rm cont} &= \left(\frac{m_1 m_2}{E_1 E_2}\right)^{1/2 + \epsilon} \frac{\eta^3 D}{\pi^{3/2}} e^{-\eta^2 r^2} \,\delta_{L,0} \delta_{s_1,1} \left(\frac{m_1 m_2}{E_1 E_2}\right)^{1/2 + \epsilon} \end{split}$$

- Numerical solution with variational program
- Parameters fitted to nonstrange baryon spectrum

Rel. Interacting qD model

J. Ferretti, E. Santopinto & A. Vassallo, PRC83, 065204 (2011)

Resonance	Status	M ^{expt} (MeV)	J^P	L^{P}	S	<i>s</i> ₁	n_r	M ^{calc} (MeV)
N(939) P ₁₁	****	939	$\frac{1}{2}^{+}$	0+	$\frac{1}{2}$	0	0	939
$N(1440) P_{11}$	****	1420-1470	$\frac{1}{2}^{+}$	0^{+}	$\frac{1}{2}$	0	1	1513
$N(1520) D_{13}$	****	1515-1525	$\frac{3}{2}^{-}$	1-	$\frac{1}{2}$	0	0	1527
$N(1535) S_{11}$	****	1525-1545	$\frac{1}{2}^{-}$	1-	$\frac{1}{2}$	0	0	1527
$N(1650) S_{11}$	****	1645-1670	$\frac{1}{2}^{-}$	1-	$\frac{1}{2}, \frac{3}{2}$	1	0	1671
$N(1675) D_{15}$	****	1670-1680	$\frac{5}{2}^{-}$	1-	$\frac{3}{2}$	1	0	1671
$N(1680) F_{15}$	****	1680-1690	$\frac{5}{2}^{+}$	2^{+}	$\frac{1}{2}$	0	0	1808
$N(1700) D_{13}$	***	1650-1750	$\frac{3}{2}^{-}$	1-	$\frac{1}{2}, \frac{3}{2}$	1	0	1671
$N(1710) P_{11}$	***	1680-1740	$\frac{1}{2}^{+}$	0^{+}	$\frac{1}{2}$	1	0	1768
$N(1720) P_{13}$	****	1700-1750	$\frac{3}{2}^{+}$	0^{+}	$\frac{\overline{3}}{2}$	1	0	1768
$\Delta(1232) \ P_{33}$	****	1231-1233	$\frac{3}{2}^{+}$	0^{+}	$\frac{3}{2}$	1	0	1233
$\Delta(1600) P_{33}$	***	1550-1700	$\frac{3}{2}^{+}$	0^{+}	$\frac{\overline{3}}{2}$	1	1	1602
$\Delta(1620) S_{31}$	****	1600-1660	$\frac{1}{2}^{-}$	1-	$\frac{1}{2}$	1	0	1554
$\Delta(1700) \: D_{33}$	****	1670-1750	$\frac{3}{2}^{-}$	1-	$\frac{1}{2}$	1	0	1554
$\Delta(1900)\;S_{31}$	**	1850-1950	$\frac{1}{2}^{-}$	1-	$\frac{1}{2}$	1	1	1986
$\Delta(1905)\;F_{35}$	****	1865-1915	$\frac{5}{2}^{+}$	2+	$\frac{3}{2}$	1	0	1952
$\Delta(1910) P_{31}$	****	1870-1920	$\frac{1}{2}^{+}$	2+	$\frac{3}{2}$	1	0	1952
$\Delta(1920) P_{33}$	***	1900-1970	$\frac{3}{2}^{+}$	2+	$\frac{3}{2}$	1	0	1952
$\Delta(1930) \: D_{35}$	***	1900-2020	$\frac{5}{2}^{-}$	1-	$\frac{3}{2}$	1	0	2005
$\Delta(1950) F_{37}$	****	1915-1950	$\frac{7}{2}^{+}$	2+	$\frac{3}{2}$	1	0	1952
$N(2100) P_{11}$	*	1855-1915	$\frac{1}{2}^{+}$	0^{+}	$\frac{1}{2}$	0	2	1893
$N(2090) S_{11}$	*	1869–1987	$\frac{1}{2}^{-}$	1-	$\frac{1}{2}$	0	1	1882
$N(1900) P_{13}$	**	1820–1974	$\frac{3}{2}^{+}$	2+	$\frac{1}{2}$	0	0	1808
$N(2080) D_{13}$	**	1740-1940	$\frac{3}{2}^{-}$	1-	$\frac{1}{2}$	0	1	1882
$\Delta(1750) P_{31}$	*	1708-1780	$\frac{1}{2}^{+}$	0^{+}	$\frac{1}{2}$	1	0	1858
$\Delta(1940) \: D_{33}$	*	1947–2167	$\frac{3}{2}^{-}$	1-	$\frac{1}{2}$	1	1	1986

0 missing resonances below 2 GeV

Model Parameters

$m_a = 200 \text{ MeV}$	$m_s = 600 \mathrm{MeV}$	$m_{AV} = 950 \text{ MeV}$
$\tau = 1.25$	$\mu = 75.0 \text{ fm}^{-1}$	$\beta = 2.15 \text{ fm}^{-2}$
$A_{\delta} = 375 \text{ MeV}$	$A_I = 260 \text{ MeV}$	$A_{SI} = 375 \text{ MeV}$
$\sigma = 1.71 \text{ fm}^{-1}$	$E_0 = 154 \text{ MeV}$	$D = 4.66 \text{fm}^2$
$\eta = 10.0 \text{ fm}^{-1}$	$\epsilon = 0.200$	

Rel. Interacting qD model – strange B.

E. Santopinto & J. Ferretti, arXiv: 1412.7571

Model

- Model extended to strange sector
- Hamiltonian:

$$M = E_0 + \sqrt{\vec{q}^2 + m_1^2} + \sqrt{\vec{q}^2 + m_2^2} + M_{\text{dir}}(r) + M_{\text{ex}}(r) M_{\text{ex}}(r) = (-1)^{L+1} e^{-\sigma r} [A_S \vec{s}_1 \cdot \vec{s}_2 + A_F \vec{\lambda}_1^f \cdot \vec{\lambda}_2^f + A_I \vec{t}_1 \cdot \vec{t}_2]$$

$$M_{\text{dir}}(r) = -\frac{\tau}{r} (1 - e^{-\mu r}) + \beta r.$$

- Gursey-Radicati inspired exchange interaction
- Parameters fitted to strange baryon spectrum

Parameters

Parameter	Value (Fit 1)	Value (Fit 2)	Parameter	Value (Fit 1)	Value (Fit 2)
m_n $m_{[n,n]}$ $m_{\{n,n\}}$ $m_{\{s,s\}}$ μ A_S A_I E_0 D	200 MeV 600 MeV 950 MeV 1580 MeV 75.0 fm ⁻¹ 350 MeV 250 MeV 141 MeV 6.13 fm ²	159 MeV 607 MeV 963 MeV 1352 MeV 28.4 fm ⁻¹ -436 MeV 791 MeV 150 MeV	m_s $m_{[n,s]}$ $m_{\{n,s\}}$ au β A_F σ ϵ η	550 MeV 900 MeV 1200 MeV 1.20 2.15 fm ⁻² 100 MeV 2.30 fm ⁻¹ 0.37 11.0 fm ⁻¹	213 Mev 856 MeV 1216 MeV 1.02 2.36 fm ⁻² 193 MeV 2.25 fm ⁻¹ –
2			,,		

Sigma & sigma* states

Lambda & Lambda* states

Xi, Xi* & Omega states

e.m. nucleon form factors

De Sanctis, Ferretti, Santopinto, Vassallo, Phys. Rev. C 84, 055201(2011

Nucleon e.m. form factors impulse approximation Klink, Phys. Rev. C 58, 3587 (1998)

Schematic representation of the e.m. current in the impulse approx.

Nucleon state **a s** eigenvalue problem of mass operator. Quark-(scalar) diquark state.

Matrix elements of e.m. current operator with quark and diquark form factors.

Ratio µp GEp/GMp

De Sanctis, Ferretti, Santopinto, Vassallo, Phys. Rev. C 84, 055201

18

Conclusion

Constituent qD models: why?

- Concept of constituent diquark (D)
- Baryons as qD bound states
- Scalar & axial-vector diquarks
- Problem of the missing resonances

Interacting qD model

- Model Hamiltonian
- Nonstrange spectrum & missing resonances in the model
- Strange spectrum

Thank you for your attention