Mixing of pseudoscalar-baryon and vector-baryon in the $J^P = 1/2^-$ sector and the N*(1535) and N*(1650) resonances

E. J. Garzon, E. Oset

IFIC - Universitat de Valencia

May 26, 2015

1 Introduction

2 Framework

4 Results

Section 1

Introduction

• $N^*(1535)$ and $N^*(1650)$ are both well established 4-star resonances of the $J^P = 1/2^-$ sector.

 1 N. Kaiser, P. B. Siegel and W. Weise, Phys. Lett. B $362,\,23$ (1995) 2 T. Inoue, E. Oset and M. J. Vicente Vacas, Phys.Rev.C65, 035204(2002)

E. J. Garzon (IFIC - UV)

NSTAR2015

May 26, 2015

4 / 19

- $N^*(1535)$ and $N^*(1650)$ are both well established 4-star resonances of the $J^P = 1/2^-$ sector.
- The introduction of the chiral unitary techniques ¹ lead to the dynamically generation of the $N^*(1535)$.

 1 N. Kaiser, P. B. Siegel and W. Weise, Phys. Lett. B $362,\,23$ (1995) 2 T. Inoue, E. Oset and M. J. Vicente Vacas, Phys.Rev.C65, 035204(2002)

E. J. Garzon (IFIC - UV)

NSTAR2015

- $N^*(1535)$ and $N^*(1650)$ are both well established 4-star resonances of the $J^P = 1/2^-$ sector.
- The introduction of the chiral unitary techniques ¹ lead to the dynamically generation of the $N^*(1535)$.
- However, in this case of the $N^*(1535)$, different cut offs or different subtraction constants² for different channels must be used.

 1 N. Kaiser, P. B. Siegel and W. Weise, Phys. Lett. B $362,\,23$ (1995) 2 T. Inoue, E. Oset and M. J. Vicente Vacas, Phys.Rev.C65, 035204(2002)

E. J. Garzon (IFIC - UV)

NSTAR2015

May 26, 2015

4 / 19

- $N^*(1535)$ and $N^*(1650)$ are both well established 4-star resonances of the $J^P = 1/2^-$ sector.
- The introduction of the chiral unitary techniques ¹ lead to the dynamically generation of the $N^*(1535)$.
- However, in this case of the $N^*(1535)$, different cut offs or different subtraction constants² for different channels must be used.
- This was considered as a manifestation a nonnegligible component of a genuine state of $N^*(1535)$.

 $^{^1}$ N. Kaiser, P. B. Siegel and W. Weise, Phys. Lett. B $362,\,23$ (1995) 2 T. Inoue, E. Oset and M. J. Vicente Vacas, Phys.Rev.C65, 035204(2002)

- In one work³ $N^*(1535)$ and $N^*(1650)$ are obtained with only pseudoscalar baryon states using an offshell approach, which is in principle equivalent to having different subtraction constants in different channels.
- The $N^*(1650)$ is dinamically generated with the vector meson-baryon interaction, including the ρN channel.
- The mixture of the pseudoscalar-baryon and vector-baryon channels can remove the pathology observed by the need of different subtraction constants in different channels.

³J. Nieves and E. Ruiz Arriola, Phys. Rev. D **64**, 116008 (2001)

Section 2

Framework

Coupled channels with $J^P = 1/2^-$

The coupled channels of $N^*(1535)$ and $N^*(1650)$ used in this work are

$$\pi N$$
, ηN , $K\Lambda$, $K\Sigma$, ρN and $\pi\Delta$ (d-wave).

 $PB \to PB$ transition mediated by a vector meson exchange 4. The potential of this transition is given by

$$V_{ij} = -C_{ij} \frac{1}{4f^2} \left(k^0 + k'^0 \right) \tag{1}$$

7 / 19

with the PB transition coefficients

	πN	ηN	$k\Lambda$	$k\Sigma$
πN	2	0	$\frac{3}{2}$	$-\frac{1}{2}$
ηN		0	$-\frac{3}{2}$	$-\frac{\bar{3}}{2}$
$K\Lambda$			0	0
$K\Sigma$				2

Table : Coefficients of *PB* transition with I = 1/2

⁴T. Inoue, E. Oset and M. J. Vicente Vacas, Phys.Rev.C65, 035204(2002) E. J. Garzon (IFIC - UV) NSTAR2015 May 26, 2015 Vertices for the transition of $\rho N \to PB$ for (a) meson exchange and (b) the Kroll-Ruderman term

Vertices for the transition of $\rho N \to PB$ with the Kroll-Ruderman term included

$$\begin{aligned} t_{\rho N(s) \to \pi N(s)} &= -2\sqrt{6}g \frac{D+F}{2f} \left\{ \frac{\frac{2}{3}\vec{q}_{\pi N}^2}{(P_V + q_{\pi N})^2 - m_{\pi}^2} + 1 \right\} & (2) \\ t_{\rho N(s) \to \eta N(s)} &= 0 & (3) \\ t_{\rho N(s) \to K\Lambda(s)} &= -\frac{1}{2}\sqrt{6}g \frac{D+3F}{2f} \left\{ \frac{\frac{2}{3}\vec{q}_{K\Lambda}^2}{(P_V + q_{K\Lambda})^2 - m_K^2} + 1 \right\} & (4) \\ t_{\rho N(s) \to K\Sigma(s)} &= -\frac{1}{2}\sqrt{6}g \frac{D-F}{2f} \left\{ \frac{\frac{2}{3}\vec{q}_{K\Sigma}^2}{(P_V + q_{K\Sigma})^2 - m_K^2} + 1 \right\} & (5) \end{aligned}$$

$\pi\Delta$ transition potentials

The transition of $\rho N \to \pi \Delta(d)$ is introduced with

$$t_{\rho N(s) \to \pi \Delta(d)} = g \frac{2}{\sqrt{3}} \frac{f_{\pi N \Delta}}{m_{\pi}} \left\{ \frac{\frac{2}{3} \vec{q}^{\,2}}{\left(P_V + q\right)^2 - m_{\pi}^2} \right\}$$
(6)

The transitions involving d wave are introduced with a parameter⁵ γ for $\pi\Delta(d) \to \pi\Delta(d)$ and $\pi\Delta(d) \to \pi N(s)$.

$$t_{\pi\Delta(d)\to\pi\Delta(d)} = -\frac{\gamma_0}{m_\pi^5} q_{\pi\Delta}^4 \tag{7}$$
$$t_{\pi\Delta(d)\to\pi N(s)} = -\frac{\gamma_1}{m_\pi^3} q_{\pi\Delta}^2 \tag{8}$$

 $^5 \mathrm{As}$ done in L. Roca, S. Sarkar, V. K. Magas, and E. Oset, Phys. Rev. C 73, 045208 (2006).

Section 3

Fitting the data

We fit eight parameters to the data⁶ of the πN scattering in S_{11} .

 $^6\mathrm{R.}$ A. Arndt, W. J. Briscoe, I. I. Strakovsky and R. L. Workman, Phys. Rev. C 74, 045205 (2006)

We fit eight parameters to the data⁶ of the πN scattering in S_{11} .

- Six subtraction constants of the G function, one for each channel $(\pi N(s), \eta N(s), K\Lambda(s), K\Sigma(s), \rho N(s), \pi\Delta(d)).$
- Two parameters of the L=2 transitions, γ_i

⁶R. A. Arndt, W. J. Briscoe, I. I. Strakovsky and R. L. Workman, Phys. Rev. C **74**, 045205 (2006)

We fit eight parameters to the data⁶ of the πN scattering in S_{11} .

- Six subtraction constants of the G function, one for each channel $(\pi N(s), \eta N(s), K\Lambda(s), K\Sigma(s), \rho N(s), \pi\Delta(d)).$
- Two parameters of the L=2 transitions, γ_i

$\mu [{\rm MeV}]$	$a_{N\pi}$	$a_{N\eta}$	$a_{\Lambda K}$	$a_{\Sigma K}$	$a_{N\rho}$	$a_{\Delta\pi}$	γ_0	γ_1
M_B	-1.203	-2.208	-1.985	-0.528	-0.493	-1.379	0.595	1.47
630	-2.001	-3.006	-3.128	-1.799	-1.291	-2.720	0.595	1.47

 $^{^6\}mathrm{R.}$ A. Arndt, W. J. Briscoe, I. I. Strakovsky and R. L. Workman, Phys. Rev. C 74, 045205 (2006)

We fit eight parameters to the data⁶ of the πN scattering in S_{11} .

- Six subtraction constants of the G function, one for each channel $(\pi N(s), \eta N(s), K\Lambda(s), K\Sigma(s), \rho N(s), \pi\Delta(d)).$
- Two parameters of the L=2 transitions, γ_i

μ [MeV]	$a_{N\pi}$	$a_{N\eta}$	$a_{\Lambda K}$	$a_{\Sigma K}$	$a_{N\rho}$	$a_{\Delta\pi}$	γ_0	γ_1
M_B	-1.203	-2.208	-1.985	-0.528	-0.493	-1.379	0.595	1.47
630	-2.001	-3.006	-3.128	-1.799	-1.291	-2.720	0.595	1.47

• Where now, all the subtraction constants are of the natural size.

⁶R. A. Arndt, W. J. Briscoe, I. I. Strakovsky and R. L. Workman, Phys. Rev. C **74**, 045205 (2006)

We show the real part (circles) and imaginary part (cross) of the data and the result of our fit of $\tilde{T}_{\pi N}$ for real (solid) and imaginary (dashed) parts.

Results of the $|T|^2$ matrix for the diagonal channels

$N^*(1535) \ J^P = 1/2^-$								
	Theory	PDG	Cutkosky ⁷	Anisovich ⁸	Vrana ⁹	Thoma ¹⁰		
Re	1508.1	1490 - 1530	$1510~\pm~50$	1501 ± 4	1525	$1508 \ {}^{+}_{-} \ {}^{10}_{30}$		
$2 \mathrm{Im}$	90.3	90 - 250	260 ± 80	134 ± 11	102	$165~\pm~15$		
Channel		Branching Ratio $[\Gamma_i/\Gamma(\%)]$						
Nπ	58.6	35 - 55	50 ± 10	54 ± 5	35 ± 8	37 ± 9		
$N\eta$	37.0	42 ± 10		33 ± 5	51 ± 5	$40~\pm~10$		
ΛK	0.0	-						
ΣK	0.0	-						
N ho	1.0	2 ± 1			2 ± 1			
$\Delta \pi$	3.3	0 - 4		2.5 ± 1.5	1 ± 1	23 ± 8		

⁷R. E. Cutkosky *et al.*, Phys. Rev. D **20**, 2839 (1979).

⁸A. V. Anisovich *et al.*, Eur. Phys. J. A **48**, 15 (2012)

⁹T. P. Vrana *et al.*, Phys. Rept. **328**, 181 (2000)

¹⁰U. Thoma *et al.*, Phys. Lett. B **659**, 87 (2008)

Branching ratios for the $N^*(1650) J^P = 1/2^-$

$N^*(1650) \ J^P = 1/2^-$								
	Theory	PDG	Cutkosky ¹¹	Anisovich ¹²	Vrana ¹³	Thoma ¹⁴		
Re	1672.3	1640 - 1670	$1640~\pm~20$	$1647~\pm~6$	1663	$1645~\pm~15$		
$2 \mathrm{Im}$	158.2	100 - 170	150 ± 30	103 ± 8	240	187 ± 20		
Channel			Branching Ra	atio $[\Gamma_i/\Gamma(\%)]$]			
$N\pi$	58.9	50 - 90	65 ± 10	51 ± 4	74 ± 2	70 ± 15		
$N\eta$	27.6	5 - 15		18 ± 4	6 ± 1	15 ± 6		
ΛK	5.7	-		10 ± 5				
ΣK	0.0	-						
$N\rho$	5.6	1 ± 1			1 ± 1			
$\Delta \pi$	2.2	$0\ -\ 25$		19 ± 9	2 ± 1	10 ± 5		

¹¹R. E. Cutkosky *et al.*, Phys. Rev. D **20**, 2839 (1979).

- ¹²A. V. Anisovich *et al.*, Eur. Phys. J. A **48**, 15 (2012)
- ¹³T. P. Vrana *et al.*, Phys. Rept. **328**, 181 (2000)
- ¹⁴U. Thoma *et al.*, Phys. Lett. B **659**, 87 (2008)

T. Inoue, E. Oset and M. J. Vicente Vacas, Phys.Rev.C65, 035204(2002)

T. Inoue, E. Oset and M. J. Vicente Vacas, Phys.Rev.C65

- We have used the πN , ηN , $K\Lambda$, $K\Sigma$, ρN and $\pi\Delta$ (d-wave) in coupled channels to fit the experimental data of the S_{11} πN scattering.
- The subtraction constant obtained from the fit are now all negative and of natural size.

- We have used the πN , ηN , $K\Lambda$, $K\Sigma$, ρN and $\pi\Delta$ (d-wave) in coupled channels to fit the experimental data of the S_{11} πN scattering.
- The subtraction constant obtained from the fit are now all negative and of natural size.
- We are able to generate both the $N^*(1535)$ and the $N^*(1650)$ resonances considering the ρN and $\pi \Delta$ channels which is an important success of the mixing of pseudoscalar and vector mesons.

- We have used the πN , ηN , $K\Lambda$, $K\Sigma$, ρN and $\pi\Delta$ (d-wave) in coupled channels to fit the experimental data of the S_{11} πN scattering.
- The subtraction constant obtained from the fit are now all negative and of natural size.
- We are able to generate both the $N^*(1535)$ and the $N^*(1650)$ resonances considering the ρN and $\pi \Delta$ channels which is an important success of the mixing of pseudoscalar and vector mesons.
- The important component of a genuine state in the wave function of the $N^*(1535)$ claimed in other works, can be translated now by stating that the missing components can be filled up by the ρN and $\pi \Delta$ channels.