Construction of KN potential and structure of Λ(1405) based on chiral unitary approach

Kenta Miyahara Kyoto Univ.

Tetsuo Hyodo

NSTAR 2015, May

Contents

- 1. Motivation
- 2. Previous work (construction of potential)

- 3. This work (new potential)
 - > Improvement of construction procedure (step2)
 - New constraint from SIDDHARTA (step1)
- 4.Discussion (structure of Λ(1405))5.Summary

Theoretical calculation of KNN (I=1/2, J^p=0⁻)

Conclusive result has not been achieved in theoretical calculations

Theoretical calculation of $\overline{K}NN$ (I=1/2, J^p=0⁻)

Conclusive result has not been achieved in theoretical calculations

Uncertainty is significantly reduced by SIDDHARTA

Construction of *r*-dep. local potential

Previous work

T. Hyodo and W. Weise, Phys. Rev. C 77, 035204 (2008)

- KN amplitude from chiral unitary approach
 - chiral unitary approach

Jido et al. Nucl. Phys. A 725, 181 (2003)

channel coupling

in S=-1 , I=0 sector

Attractions in $\overline{K}N$ and $\pi\Sigma$ leads to **double pole** structure

equivalent local potential

> equivalent local potential

Consistent with original strategy

Determination of "b" is improved

> problem

 $V^{
m equiv}$ does not reproduce the pole structure of $F_{ar{K}N}^{Ch}$

<u>This work</u>

Improvement (KN pole)

Hyodo-Weise (2008)

deviation of the amplitude on the real axis

----- change ΔV and fitting range

ΔF real and $\overline{\mathbf{K}}\mathbf{N}$ pole position are improved

Improvement (πΣ pole)

second pole did not appear

change fit range and polynomial type of V^{equiv}

	Potential1	Potential2	Chiral unitary	Potential?
polynomial type in E	3rd order	10th order		
fit range [MeV]	1332~1410	1332~1520		-40 -60
Pole [MeV]	1427-17i	1428-17i 1400-77i	1428-17i 1400-76i	-80 -100 1340 1360 1380 1400 1420 1440

$\pi\Sigma$ pole appears at correct position

Results with SIDDHARTA

Discussion

Wave function

<u>Summary</u>

- We have improved the potential construction procedure by changing ΔV , fit range, and fit function
 $F_{\bar{K}N}^{Ch}$ is reproduced precisely in complex E plane
- We have constructed the new KN equivalent potentials in both I=0 and I=1 channels with SIDDHARTA constraint

Future work

- Examine the influence of the ambiguity of the potential by evaluating $< r^2 >$ from various potentials with different spatial structure.
- > Study the pole stability against the change of $F_{\overline{KN}}$ in connection with the experimental uncertainty.
- > Calculate $\overline{K}NN$ system with the new equivalent potential.
- Construct KN-πΣ coupled-channel equivalent potential to treat πΣ-channel explicitly.