Compositeness of the $\Delta(1232)$ resonance in πN scatterings

Takayasu SEKIHARA (RCNP, Osaka Univ.)

in collaboration with

Takashi ARAI (KEK),

Junko YAMAGATA-SEKIHARA (Oshima National Coll. of Maritime Tech.)

and Shigehiro YASUI (Tokyo Inst. Tech.)

1. Introduction

2. Formulation

3. Numerical results

4. Summary

[1] T.S., T. Arai, J. Yamagata-Sekihara and S. Yasui, in preparation.

++ The $\Delta(1232)$ resonance ++

• The $\Delta(1232)$ resonance is the first excitation of the nucleon.

---- Status: **** = existence is certain, and properties are at least fairly

Δ BARYONS (S = 0, I = 3/2)

 $\Delta^{++} = uuu$, $\Delta^{+} = uud$, $\Delta^{0} = udd$, $\Delta^{-} = ddd$

∆(1232) 3/2⁺

$$I(J^P) = \frac{3}{2}(\frac{3}{2}^+)$$

Breit-Wigner mass (mixed charges) = 1230 to 1234 (\approx 1232) MeV Breit-Wigner full width (mixed charges) = 114 to 120 (\approx 117) MeV $p_{\text{beam}} = 0.30 \text{ GeV}/c$ $4\pi\lambda^2 = 94.8 \text{ mb}$ Re(pole position) = 1209 to 1211 (\approx 1210) MeV $-2\text{Im}(\text{pole position}) = 98 \text{ to } 102 (\approx 100) \text{ MeV}$

△(1232) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
Νπ	100 %	229
Nγ	0.55-0.65 %	259
$N\gamma$, helicity=1/2	0.11-0.13 %	259
$N\gamma$, helicity=3/2	0.44-0.52 %	259

Particle Data Group.

well explored.

++ The $\Delta(1232)$ resonance ++

• The $\Delta(1232)$ resonance is the first excitation of the nucleon.

- $\Delta(1232)$ is one of the most fundamental states to understand the underlying theory of strong interaction, QCD.
 - □ $\Delta(1232)^{++}$ as a ($u^{+} u^{+} u^{+}$) state leads to an idea that quarks has color degrees of freedom. Otherwise, it breaks the Pauli principle with respect to the exchange of quarks. Han and Nambu ('65).
 - Δ(1232) belongs to the decuplet in the flavor SU(3) symmetry, together with Σ(1385), Ξ(1530), and Ω, in the quark model.
 Prediction of the existence and
 - properties of Ω , and experimental discovery followed it. Barnes ('64).
 - <-- An excellent success of the quark model !

++ Internal structure of $\Delta(1232)$ ++ • The excellent success of the quark model for $\Delta(1232)$ and other decuplet states strongly indicates that the decuplet states are described as genuine qqq states very well.

- However, effect of the meson-nucleon cloud for $\Delta(1232)$ seems

++ Large πN component ? ++

• The quark model strongly indicates a genuine qqq state for $\Delta(1232)$, but the transition form factor requires large effect of meson cloud.

= Recently the πN component in $\Delta(1232)$ was studied in terms of the $\Delta(1232)$ wave function from πN Amp

the $\Delta(1232)$ wave function from πN Amp. Aceti *et al.*, *Eur. Phys. J.* <u>A50</u> (2014) 57.

$$\langle \Psi^* | \Psi \rangle = \sum_i X_i + Z = 1 \qquad X_i = \int \frac{d^3 q}{(2\pi)^3} \langle \Psi^* | \vec{q} \rangle \langle \vec{q} | \Psi \rangle = -g_i^2 \left[\frac{dG_i}{dE} \right]_{E=E_{\rm pole}}$$

--- Compositeness *X* as a norm of two-body component, coupling constant *g*, and πN loop function *G*.

<u>Compositeness X is not observable</u> and hence <u>model dependent</u>.
 (cf. s- and d-wave p-n components in deuteron)
 We can evaluate compositeness in appropriate models.

Hyodo, Jido, Hosaka (2012), Aceti-Oset (2012), Hyodo (2013), Nagahiro-Hosaka (2014), See also <u>T. S.</u>, Hyodo and Jido, PTEP, in press [arXiv:1411.2308].

++ πN compositeness ++

= Recently the πN component in $\Delta(1232)$ was studied in terms of

the $\Delta(1232)$ wave function from πN Amp. Aceti *et al.*, *Eur. Phys. J.* <u>A50</u> (2014) 57.

$$\langle \Psi^* | \Psi \rangle = \sum_i X_i + Z = 1 \qquad X_i = \int \frac{d^3 q}{(2\pi)^3} \langle \Psi^* | \vec{q} \rangle \langle \vec{q} | \Psi \rangle = -g_i^2 \left[\frac{dG_i}{dE} \right]_{E=E_{\text{pole}}}$$

Compositeness *X*, coupling constant *g*, and πN loop function *G*.

$$-\tilde{g}_{\Delta}^{2}\left[\frac{\mathrm{d}G^{II}(s)}{\mathrm{d}\sqrt{s}}\right]_{\sqrt{s}=\sqrt{s_{0}}} = (0.62 - i0.41)$$

 Large real part of the πN compositeness, but imaginary part is non-negligible.
 The result implies large πN contribution to, *e.g.*, the transition form factor.

--> Need a more refined model !

• However, this result was <u>obtained in a very simple model</u>. • Interaction: constant + bare Δ . • Loop function: (1, β) three-dimensional cut-off.

$$v = -lpha \left(1 + rac{eta}{s_R - s}
ight)$$

 ++ Purpose and strategy of this study ++
 In this study we want to construct a more refined model and evaluate the πN compositeness for the Δ(1232) resonance.
 --> Employ the chiral unitary approach for the πN elastic scattering. Meissner and Oller, Nucl. Phys. A673 (2000) 311,

$$T = V + VGT = \frac{1}{1/V - G}$$

Alarcon, Martin Camalich, Oller, Ann. Phys. <u>336</u> (2013) 413,

□ Interaction kernel *V* from the chiral perturbation theory for πN : Leading order + next-to-leading order + bare Λ .

- Loop function G calculated with the dispersion relation in a covariant way.
- □ Fitted to the πN scattering amplitude ($S_{11}, S_{31}, P_{11}, P_{31}, P_{13}$, and P_{33}) obtained as a PWA solution "WI 08" up to $\sqrt{s} = 1.35$ GeV.

Workman et al., Phys. Rev. <u>D86</u> (2012) 014012.

• From the pole position and residue for physical $\Delta(1232)$, we evaluate the πN compositeness for the $\Delta(1232)$ resonance.

++ Compositeness for two-body systems ++

\Box Ex.) $\Lambda(1405)$ in chiral unitary approach.

T.S., Hyodo and Jido, PTEP, in press [arXiv:1411.2308].

	$\Lambda(1405)$ (higher pole)
$\sqrt{s_{ m pole}}$	$1424-26i~{ m MeV}$
$X_{\bar{K}N}$	1.14 + 0.01i
$X_{\pi\Sigma}$	-0.19 - 0.22i
$X_{\eta\Lambda}$	0.13+0.02i
$X_{K\Xi}$	0.00 + 0.00i
>Z	-0.08 + 0.19i

 ++ Compositeness from scattering amplitude ++
 We can extract the resonance wave function from the solution of the Lippmann-Schwinger equation. <u>T.S.</u>, Hyodo and Jido, PTEP, in press
 --- Fixing model to describe scattering amplitude. [arXiv:1411.2308].
 <=> Fixing analytic form of the amplitude to the resonance pole.
 <=> Becomes a <u>"ruler" to measure the compositeness</u>.

Lippmann-Schwinger equation in the NR framework.

$$\hat{T}(E) = \hat{V} + \hat{V} \frac{1}{E - \hat{H}_0} \hat{T} = \hat{V} + \hat{V} \frac{1}{E - \hat{H}} \hat{V} \qquad \langle \vec{q}' | \hat{T}(E) | \vec{q} \rangle = T(E; \vec{q}, \vec{q}')$$

• Near the resonance pole position E_{pole} , amplitude is dominated by the pole term in the expansion by the eigenstates of H as

$$\langle \vec{q}\,' | \hat{T}(E) | \vec{q} \rangle \approx \langle \vec{q}\,' | \hat{V} | \Psi \rangle \frac{1}{E - E_{\text{pole}}} \langle \Psi^* | \hat{V} | \vec{q} \rangle$$

• For an <u>s-wave</u> separable interaction: $\langle \vec{q} | \hat{V} | \Psi \rangle = \langle \Psi^* | \hat{V} | \vec{q} \rangle = g$

T.S., Hyodo and Jido, PTEP, in press [arXiv:1411.2308].

++ Compositeness from scattering amplitude ++
 Near the resonance pole position *E*_{pole}, amplitude is dominated by the pole term in the expansion by the eigenstates of *H* as

$$\langle \vec{q}' | \hat{T}(E) | \vec{q} \rangle \approx \langle \vec{q}' | \hat{V} | \Psi \rangle \frac{1}{E - E_{\text{pole}}} \langle \Psi^* | \hat{V} | \vec{q} \rangle$$

 $\Box \text{ For } \underline{L\text{-wave}} \text{ separable interaction: } \langle \vec{q} | \hat{V} | \Psi \rangle = \langle \Psi^* | \hat{V} | \vec{q} \rangle = g \times | \vec{q} |^L$

Aceti and Oset, *Phys. Rev.* <u>D86</u> (2012) 014012. --- This form is necessary for the correct behavior of the amplitude near the threshold: $T_{L-\text{wave}} = |\vec{q}|^{2L} \times T'(E)$

As a result, the norm of the two-body wave function is written as

$$X = \int \frac{d^3q}{(2\pi)^3} \langle \Psi^* | \vec{q} \, \rangle \langle \vec{q} \, | \Psi \rangle = g^2 \int \frac{d^3q}{(2\pi)^3} \frac{|\vec{q}\,|^{2L}}{[E - (M_{\rm th} + q^2/(2\mu))]^2} = -g^2 \left[\frac{dG_L}{dE} \right]_{E=E_{\rm pole}}$$

--- *G* is the loop function:

$$G_L = \int rac{d^3 q}{(2\pi)^3} rac{|ec{q}\,|^{2L}}{E - (M_{
m th} + q^2/(2\mu))}$$

--> We must keep $|q|^{2L}$ dep. without "on-shell factorization" on it !

++ Chiral unitary approach for πN scattering ++ • We employ chiral unitary approach for the πN elastic scattering.

++ Chiral unitary approach for πN scattering ++ • We employ chiral unitary approach for the πN elastic scattering.

$$T'_{IL}^{\pm} = V'_{IL}^{\pm} + V'_{IL}^{\pm} G_L T'_{IL}^{\pm} = \frac{1}{1/V'_{IL}^{\pm} - G_L}$$

- We have 7 model parameters: 4 LECs, bare Δ mass and coupling constant to πN , and 1 subtraction const.
- --> Fitted to the πN scattering amplitude ($S_{11}, S_{31}, P_{11}, P_{31}, P_{13}, P_{33}$) obtained as a PWA solution "WI 08" up to $\sqrt{s} = 1.35$ GeV.

Workman et al., Phys. Rev. <u>D86</u> (2012) 014012.

• The P_{11} and P_{33} amplitude contain poles corresponding to the physical N(940) and $\Delta(1232)$, respectively:

$$T'_{IL}^{\pm}(\sqrt{s}) = \frac{g^2}{\sqrt{s} - \sqrt{s_{\text{pole}}}} + (\text{regular})$$

$$Elementariness$$

$$Z = -g^2 \left[G_L^2 \frac{dV'_{IL}^{\pm}}{d\sqrt{s}} \right]_{\sqrt{s} = \sqrt{s_{\text{pole}}}}$$

$$X_{\pi N} = -g^2 \left[\frac{dG_L}{d\sqrt{s}} \right]_{\sqrt{s} = \sqrt{s_{\text{pole}}}} X_{\pi N} + Z = 1$$

3. Numerical results

++ Compositeness from fitted amplitude ++

• Fitted to the πN amplitude WI 08 ($S_{11}, S_{31}, P_{11}, P_{31}, P_{13}, P_{33}$).

• For $\Delta(1232)$, its pole position is very similar to the PDG value.

Re(pole position) = 1209 to 1211 (\approx 1210) MeV -2Im(pole position) = 98 to 102 (\approx 100) MeV

large real part ! But non-negligible imaginary part as well.

The πN compositeness $X_{\pi N}$ takes

RCNP

--> Our refined model reconfirms the result in the previous study.

3. Numerical results

++ Compositeness from fitted amplitude ++

• Fitted to the πN amplitude WI 08 ($S_{11}, S_{31}, P_{11}, P_{31}, P_{13}, P_{33}$).

 $< -> dG_L / d\sqrt{s}$ should be negative: 1 121 10 $\lfloor a \sqrt{s} \rfloor_{\sqrt{s} = \sqrt{s_{\text{pole}}}}$

$$rac{dG_L}{d\sqrt{s}} = -2\sqrt{s} \int_{s_{
m th}}^{\infty} rac{ds'}{2\pi} rac{
ho(s')q(s')^{2L}}{(s'-s-i0)^2}$$

$$X_{\pi N} = -g^2 \left[rac{dG_L}{d\sqrt{s}}
ight]$$

--> Constrain subtraction const. !

3. Numerical results

++ Compositeness from fitted amplitude ++

• The subtraction const. is constrained so that $dG_L / d\sqrt{s}$ is non-

positive at the nucleon pole position: $\frac{dG_L}{d\sqrt{s}}(M_N) \le 0$

RCNP

• For N(940), $X_{\pi N}$ is now non-negative, but $X_{\pi N}$ becomes zero. --> Implies no πN cloud on N(940) in the dispersive approach ???

4. Summary

- We have investigated internal structure of $\Delta(1232)$ and N(940) in terms of the πN component by using the compositeness.
- The πN compositeness was <u>extracted from the πN elastic</u> <u>scattering amplitude</u> in the chiral unitary approach.
 Interaction from LO + NLO + bare Δ of chiral perturbation theory.
 Amplitude is unitarized in the dispersive approach.

$$T'^{\pm}_{IL}(\sqrt{s}) = \frac{g^2}{\sqrt{s} - \sqrt{s_{\text{pole}}}} + (\text{regular}) \qquad \qquad X_{\pi N} = -g^2 \left[\frac{dG_L}{d\sqrt{s}}\right]_{\sqrt{s} = \sqrt{s_{\text{pole}}}}$$

- Fitting the πN amplitude to the solution of PWA, we have obtained large real part of πN compositeness for $\Delta(1232)$ and non-negligible imaginary part as well.
- --> Our refined model reconfirms the result in the previous study.
- Open question: why physical Δ(1232) has large coupling to πN ?
 <u>This leads to large πN compositeness and πN cloud for Δ(1232)</u>. Can we answer this question by using QCD ?

Thank you very much for your kind attention !

