Photoproduction for *N*^{*} and related topics at LEPS/LEPS2

May/26/2014

RCNP, Osaka University Hideki Kohri

Motivation for *N*^{*} **studies**

Quark models predict a lot of baryon resonances. However, most of them are not identified experimentally. These are called '**Missing resonances**'. They are predicted to decay not only to π N channel but also to $K\Lambda$, $K\Sigma$, η N, ω N, and $\pi\Delta$ channels by Capstick and Roberts. (Phys. Rev. D 49 (1994) 4570, Phys. Rev. D 58 (1998) 074011)

Since only πN channel has been extensively studied so far,

N^{*} studies using other channels are very important.

SPring-8 LEPS facility

Super Photon ring - 8 GeV

Electron storage ring

- 8 GeV electron beam
- Diameter ≈457 m
- RF 508 MHz
- 1-bunch spread is within $\sigma = 12$ psec.
- Beam Current = 100 mA

SPring-8 beamline map

LEPS facility LEPS experiment started in 2000

LEPS detector setup

LEPS detector was optimized to detect ϕ meson decaying to K⁺K⁻ at forward angles

Published studies for N^{*} at LEPS

Differential cross sections for $\mathrm{K}^{\!+}\Lambda$

Theoretical studies of differential cross sections for K⁺ Λ (1520)

N^* and Δ^* listings in 2014

N(2080) 3/2⁻ was split into two states in the 2014 version

p 1/2 ⁺ ****	N(1895) 1/2 ⁻ **	Δ (1232) 3/2 ⁺ ****	∆(2300) 9/2⁺ **
n 1/2+ ****	N(1900) 3/2+ ***	Δ (1600) 3/2+ ***	∆(2350) 5/2 ⁻ *
N(1440) 1/2 ⁺ /****	N(1990) 7/2+ **	∆(1620) 1/2⁻ ****	∆(2390) 7/2⁺ *
N(1520) 3/2 ⁻ / ****	N(2000) 5/2+ **	∆(1700) 3/2⁻ ****	∆(2400) 9/2⁻ **
N(1535) 1/2 ⁻ ****	N(2040) 3/2+ *	Δ (1750) 1/2 $^+$ *	Δ (2420) 11/2 ⁺ ****
N(1650) 1/2 ****	N(2060) 5/2 ⁻ **	∆(1900) 1/2⁻ **	∆(2750) 13/2 ⁻ **
N(1675) 5/2 ****	N(2100) 1/2+ *	Δ (1905) 5/2+ ****	Δ (2950) 15/2+ **
N(1680) 5/2 ⁺ ****	N(2120) 3/2 ⁻ **	Δ (1910) 1/2 ⁺ ****	
N(1685) *	N(2190) 7/2 ⁻ ****	∆(1920) 3/2+ ***	
N(1700) 3/2 ⁻ ***	N(2220) 9/2 ⁺ ****	∆(1930) 5/2 ⁻ ***	
N(1710) 1/2 ⁺ ***	N(2250) 9/2 ⁻ ****	∆(1940) 3/2⁻ **	
N(1720) 3/2 ⁺ ****	N(2300) 1/2 ⁺ **	Δ (1950) 7/2+ ****	
N(1860)↓ 5/2+ **	N(2570) 5/2 ⁻ **	∆(2000) 5/2+ **	
N(1875) 3/2 ⁻ ***	N(2600) 11/2 ⁻ ***	∆(2150) 1/2 ⁻ *	
N(1880) 1/2+ **	N(2700) 13/2 ⁺ **	∆(2200) 7/2⁻ *	

PDG, Chinise Physics C Vol.38 No.9 (2014) 090001

Theoretical studies of photon beam asymmetry for K⁺ Λ (1520)

Photon asymmetry data cannot be explained theoretically. These data put strong constraint in future studies.

H. Kohri et al. (LEPS collaboration) Phys. Rev. Lett. 104 (2010) 172001

Experimental study of interference effect between ϕ and Λ (1520)

Present studies for *N*^{*} **at LEPS**

We newly took π data at E_{γ}=1.5-3.0 GeV in 2007 dd production is precisely compared with up production by $\gamma p \rightarrow \pi^+ \Delta^0$ and $\pi^- \Delta^{++}$ reactions. Simultaneous measurements

SAPHIR data in 2005

Ratio $\sigma(\pi^+\Delta^0)/\sigma(\pi^-\Delta^{++})$

s- channel

t- channel

High momentum π data taken in 2007

Preliminary differential cross sections for $\pi^+\Delta^0$ and $\pi^-\Delta^{++}$

Development of polarized HD target and LEPS2 facility for complete measurements of physics observables

16 observables for the $\gamma N \longrightarrow K\Lambda$ and $K\Sigma$ reaction

LEPS measured two observables only.

Polarized target and large acceptance spectrometer are needed for complete measurements for advanced N^{*} studies.

Observa	ble	Polarization			
	Beam	Target	Hyperon		
Cross section & Single polarization					
dσ/dΩ	-	-	-		
Σ	linear	-	-		
Τ	-	transverse	-		
Р	-	-	У		
Beam-Target double polarization					
G	linear	Ζ	-		
Η	linear	X	-		
Ε	circular	Z	-		
F	circular	X	-		
Beam and Recoil hyperon double polarization					
Ox	linear	-	X		
Oz	linear	-	Ζ		
Cx	circular	-	X		
Cz	circular	-	Ζ		
Target and Recoil hyperon double polarization					
Tx	-	X	X		
Tz	-	X	Z		
Lx	-	Z	X		
Lz	-	Z	Z		

Boltzmann law of statistical mechanics

Dilution refrigerator (DRS)

Leiden Cryogenics DRS-2500 (³He/⁴He dilution refrigerator)

Cooling power

2500µW at 120 mK

Lowest temperature

6 mK

Polarization is grown by cooling HD at low temperature at high magnetic field.

2-3 months later

Superconducting magnet B=17 Tesla

Polarization is frozen. Temperature can be raised to 0.3 K and magnetic field can be decreased to 0.9 Tesla

during experiments at SPring-8.

Polarization degree of proton in HD

We carried out the 6th aging of HD in the beginning of 2015

Dilution refrigerator NMR coil was not cooled sufficiently ?

Relaxation time of H polarization in the SPring-8 experimental condition

SPring-8 beamline map

LEPS2 facility

LEPS2 experiment hutch was constructed in 2011

Experiment hall of SPring-8

LEPS2 experiment hutch

August 2011

BNL-E949 spectrometer was transported to SPring-8

SPring-8 LEPS2 experiment hutch

LEPS2 solenoid spectrometer system

 \bigstar Acceptance $5 - 120^{\circ}$ (charged particle) $40 - 110^{\circ}$ (photon) Momentum measurement - sideway (30–120°) **TPC** $\Delta p/p \sim 0.04$ (1 GeV/c) - forward $(5-40^\circ)$ **DC** $\Delta p/p \sim 0.01$ (1 GeV/c) ★ Particle Identification 3σ separation up to 2.7 GeV/c - sideway $(50 - 120^{\circ})$ **RPC** (TOF) - middle $(30 - 50^{\circ})$ AC, RPC - forward $(5-30^{\circ})$ TOP, RPC(<11°)

Present experiment at LEPS2 using BGOegg by mainly Tohoku University

LEPS/LEPS2 collaboration

RCNP, Osaka University, Ibaraki, Osaka 567-0047, Japan Research Center for Electron Photon Science, Tohoku University, Sendai, Miyagi 982-0826, Japan Kyoto University, Kyoto 606-8502, Japan Pusan National University, Busan 609-735, Republic of Korea Konan University, Kobe, Hyogo 658-8501, Japan XFEL Project Head Office, RIKEN 1-1, Koto, Sayo, Hyogo 679-5148, Japan Academia Sinica, Taipei 11529, Taiwan Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5143, Japan Japan Atomic Energy Agency, Kizugawa, Kyoto 619-0215, Japan Nagoya University, Nagoya, Aichi 464-8602, Japan Ohio University, Athens, OH 45701, USA Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195, Japan Yamagata University, Yamagata 990-8560, Japan Chiba University, Chiba 263-8522, Japan Wakayama Medical College, Wakayama, Wakayama 641-8509, Japan Miyazaki University, Miyazaki 889-2192, Japan National Defense Academy in Japan, Yokosuka, Kanagawa 239-8686, Japan Tokyo Institute of Technology, Tokyo 152-8551, Japan University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada University of Minnesota, Minneapolis, MN 55455, USA Gifu University, Gifu 501-1193, Japan Michigan State University, East Lansing, MI 48824, USA University of Connecticut, Storrs, CT 06269-3046, USA Joint Institute for Nuclear Research, RU-141980 Dubna, Russia National Chung Cheng University, Taiwan

Summary

We have been carrying out photoproduction experiments at E_{γ} =1.5-2.4 GeV at the LEPS facility since 2000. One of main physics motivations is the study of **N**^{*} by using various meson production reactions. Some evidence for new nucleon resonances is obtained in the $\gamma p \rightarrow K^{+}\Lambda(1520)$, ηp , and ωp reactions.

We newly obtained high momentum π data at E_{γ} =1.5-3.0 GeV in 2007. The data analysis of $\pi^{+}\Delta^{0}$ and $\pi^{-}\Delta^{++}$ reactions is in progress.

We are developing a polarized HD target and a large acceptance LEPS2 spectrometer for near future experiments measuring complete set of physics observables.