

1

Pion photo- and electroproduction and the chiral MAID interface

Marius Hilt, Björn C. Lehnhart, Stefan Scherer, Lothar Tiator NSTAR 2015, Osaka, Japan, May 25 – 28, 2015

¹Phys. Rev. C 87, 045204 (2013), Phys. Rev. C 88, 055207 (2013)

- 1. Introduction
- 2. Renormalization and power counting
- 3. Application to pion photo- and electroproduction
- 4. Summary and outlook

1. Introduction

Effective field theory

... if one writes down the most general possible Lagrangian, including all terms consistent with assumed symmetry principles, and then calculates matrix elements with this Lagrangian to any given order of perturbation theory, the result will simply be the most general possible S-matrix consistent with analyticity, perturbative unitarity, cluster decomposition and the assumed symmetry principles. ... ²

²S. Weinberg, Physica A **96**, 327 (1979)

... if we include in the Lagrangian all of the infinite number of interactions allowed by symmetries, then there will be a counterterm available to cancel every ultraviolet divergence. ... ³

³S. Weinberg, *The Quantum Theory of Fields*, Vol. I, 1995, Chap. 12

Perturbative calculations in effective field theory require two main ingredients

1. Knowledge of the most general effective Lagrangian

(a) Mesonic ChPT [SU(3)×SU(3)] 4 (π, K, η)

-q: Small quantity such as a pion mass

- Even powers
- Two-loop level

⁴Gasser, Leutwyler (1985), Fearing, Scherer (1996), Bijnens, Colangelo, Ecker (1999), Ebertshäuser, Fearing, Scherer (2002) Bijnens, Girlanda, Talavera (2002)

(b) Baryonic ChPT [SU(2)×SU(2)×U(1)] ⁵ (π, N)

$$\underbrace{\overset{2}{\mathcal{O}(q)}}_{\mathcal{O}(q)} + \underbrace{\overset{7}{\mathcal{O}(q^2)}}_{\mathcal{O}(q^2)} + \underbrace{\overset{23}{\mathcal{O}(q^3)}}_{\mathcal{O}(q^4)} + \underbrace{\overset{118}{\mathcal{O}(q^4)}}_{\mathcal{O}(q^4)} + \cdots$$

- Odd and even powers (spin)

- One-loop level

Each term comes with an independent low-energy constant (LEC)

Lowest-order Lagrangians: F, $M^2 = 2B\hat{m}$, m, g_A Higher-order Lagrangians: l_i , c_i , d_i , e_i , ...

⁵Gasser, Sainio, Švarc (1988), Bernard, Kaiser, Meißner (1995), Ecker, Mojžiš (1996), Fettes, Meißner, Mojžiš, Steininger (2000)

- 2. Consistent expansion scheme for observables
 - (a) Tree-level diagrams, loop diagrams \rightsquigarrow ultraviolet divergences, regularization (of infinities)
 - (b) Renormalization condition
 - (c) Power counting scheme for renormalized diagrams
 - (d) Remove regularization

ChPT: Momentum and quark mass expansion at fixed ratio $m_{\rm quark}/q^{2~6}$

⁶J. Gasser and H. Leutwyler, Annals Phys. **158**, 142 (1984)

2. Renormalization and power counting

• Most general Lagrangian

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\pi} + \mathcal{L}_{\pi N} = \mathcal{L}_{\pi}^{(2)} + \mathcal{L}_{\pi}^{(4)} + \ldots + \mathcal{L}_{\pi N}^{(1)} + \mathcal{L}_{\pi N}^{(2)} + \ldots$$

Basic Lagrangian

$${\cal L}^{(1)}_{\pi N} = ar{\Psi} \left(i \gamma_\mu \partial^\mu - oldsymbol{m}
ight) \Psi - rac{1}{2} rac{{\sf g}_A}{F} ar{\Psi} \gamma_\mu \gamma_5 au^a \partial^\mu \pi^a \Psi + \cdots$$

m, g_A , and F denote the chiral limit of the physical nucleon mass, the axial-vector coupling constant, and the pion-decay constant, respectively

• Power counting: Associate chiral order D with a diagram

- Square of the lowest-order pion mass:

$$M^2 = B(m_u + m_d) \sim \mathcal{O}(q^2)$$

- Nucleon mass in the chiral limit $m \sim \mathcal{O}(q^0)$
- Loop integration in n dimensions $\sim \mathcal{O}(q^n)$

– Vertex from
$$\mathcal{L}^{(2k)}_{\pi} \sim \mathcal{O}(q^{2k})$$

– Vertex from
$$\mathcal{L}_{\pi N}^{(k)} \sim \mathcal{O}(q^k)$$

- Nucleon propagator $\sim \mathcal{O}(q^{-1})$
- Pion propagator $\sim \mathcal{O}(q^{-2})$

Renormalization

- Regularize (typically dimensional regularization)

$$\begin{split} I(M^2,\mu^2,n) &= \mu^{4-n} \int \frac{d^n k}{(2\pi)^n} \frac{i}{k^2 - M^2 + i0^+} \\ &= \frac{M^2}{16\pi^2} \left[R + \ln\left(\frac{M^2}{\mu^2}\right) \right] + O(n-4), \\ \mathbb{R} &= \frac{2}{n-4} - \left[\ln(4\pi) + \Gamma'(1) \right] - 1 \to \mathbf{N} \end{split}$$

- Adjust counterterms such that they absorb all the divergences occurring in the calculation of loop diagrams
- Renormalization prescription: Adjust finite pieces such that renormalized diagrams satisfy a given power counting

• Example: Contribution to nucleon mass

Goal: $D = n \cdot 1 - 2 \cdot 1 - 1 \cdot 1 + 2 \cdot 1 = n - 1$

$$\Sigma = -rac{3 {
m g}_{A0}^2}{4 F_0^2} \left[({p \!\!\!/} + m) I_N + M^2 ({p \!\!\!/} + m) I_{N\pi} (-p,0) + \cdots
ight]$$

Apply $\overline{\mathrm{MS}}$ renormalization scheme

$$\Sigma_r = -rac{3 \mathrm{g}_{Ar}^2}{4 F_r^2} [M^2(p + m) \quad \underbrace{I_{N\pi}^r(-p, 0)}_{= -rac{1}{16\pi^2} + \dots} + \dots] = \underbrace{\mathcal{O}(q^2)}_{= -rac{1}{16\pi^2} + \dots}$$

GSS ⁷: It turns out that loops have a much more complicated low-energy structure if baryons are included. Because the nucleon mass m_N does not vanish in the chiral limit, the mass scale m (nucleon mass in the chiral limit) occurs in the effective Lagrangian $\mathcal{L}_{\pi N}^{(1)}$ This complicates life a lot.

⁷J. Gasser, M. E. Sainio, A. Švarc, Nucl. Phys. **B307**, 779 (1988)

One possible solution: Extended on-mass-shell (EOMS) scheme⁸

Main idea: Perform additional subtractions such that renormalized diagrams satisfy the power counting

Motivation for this approach⁹

Terms violating the power counting are analytic in small quantities (and can thus be absorbed in a renormalization of counterterms)

• Example (chiral limit)

$$H(p^2,m^2;n) = -\int rac{d^n k}{(2\pi)^n} rac{i}{[(k-p)^2-m^2+i0^+][k^2+i0^+]}$$

⁸T. Fuchs, J. Gegelia, G. Japaridze, S. Scherer, Phys. Rev. D **68**, 056005 (2003) ⁹J. Gegelia and G. Japaridze, Phys. Rev. D **60**, 114038 (1999)

Small quantity

$$\Delta = rac{p^2-m^2}{m^2} = \mathcal{O}(q)$$

We want the renormalized integral to be of order

$$D=n-1-2=n-3$$

Result of integration

$$H \sim F(n, \Delta) + \Delta^{n-3}G(n, \Delta)$$

- F and G are hypergeometric functions
- \bullet analytic in Δ for arbitrary n

Observation¹⁰

F corresponds to first expanding the integrand in small quantities and then performing the integration

 \Rightarrow Algorithm: Expand integrand in small quantities and subtract those (integrated) terms whose order is smaller than suggested by the power counting

¹⁰J. Gegelia, G. Japaridze, K. S. Turashvili, Theor. Math. Phys. **101**, 1313 (1994)

Here:

$$egin{aligned} H^{ ext{subtr}} &= -\int rac{d^n k}{(2\pi)^n} \, rac{i}{(k^2 - 2k \cdot p + i0^+)(k^2 + i0^+)} \Big|_{p^2 = m^2} \ &= -2ar{\lambda} + rac{1}{16\pi^2} + O(n-4) \end{aligned}$$

where

$$\bar{\lambda} = \frac{m^{n-4}}{(4\pi)^2} \left\{ \frac{1}{n-4} - \frac{1}{2} \left[\ln(4\pi) + \Gamma'(1) + 1 \right] \right\}$$

 $H^R = H - H^{\text{subtr}} = \mathcal{O}(q^{n-3})$

Chiral versus loop expansion

3. Application to pion photo- and electroproduction

$$e(k_i) + N(p_i) \rightarrow e(k_f) + N(p_f) + \pi(q)$$

One-photon-exchange approximation

Invariant amplitude

 $\mathcal{M}=$ leptonic vertex imes i propagator imes hadronic vertex $=\epsilon_{\mu}\mathcal{M}^{\mu}$

$$\epsilon_{\mu}=erac{ar{u}(k_{f})\gamma_{\mu}u(k_{i})}{k^{2}}, \hspace{0.5cm} \mathcal{M}^{\mu}=-ie\langle N(p_{f}),\pi(q)|J^{\mu}(0)|N(p_{i})
angle.$$

Current conservation

$$k_\mu {\cal M}^\mu = 0$$

Parameterization in terms of six invariant amplitudes

$$\mathcal{M}^{\mu} = ar{u}(p_f) igg(\sum_{i=1}^6 igc A_i(s,t,u) M_i^{\mu} igg) u(p_i), \quad u(p)$$
: Dirac spinor

Mandelstam variables

$$s+t+u=2m_N^2+M_\pi^2-Q^2,~~Q^2=-k^2$$

$$M_1^\mu = -rac{i}{2} \gamma_5 \left(\gamma^\mu k \!\!\!/ - k \!\!\!/ \gamma^\mu
ight), \quad \ldots$$

cm frame

$$\mathcal{M}=rac{4\pi W}{m_N}\chi_f^\dagger \mathcal{F}\chi_i,~~\chi$$
: Pauli spinor

six CGLN amplitudes

$${\cal F}=\!iec{\sigma}\cdotec{a}_{\perp} \left| egin{array}{c} {\cal F}_1(W,\Theta_{\pi},Q^2)
ight|+\ldots$$

Multipole expansion of \mathcal{F}_i in terms of Legendre polynomials and

$$egin{aligned} \mathcal{F}_1 &= \sum_{l=0}^\infty \Big\{ ig[l M_{l+} + E_{l+} ig] P_{l+1}'(x) + ig[(l+1) M_{l-} + E_{l-} ig] P_{l-1}'(x) \Big\}, & \dots \ x &= \cos \Theta_\pi = \hat{q} \cdot \hat{k} \end{aligned}$$

 $E_{l\pm}, M_{l\pm}, L_{l\pm}$: functions of W and Q^2

Isospin decomposition: four physical channels

$$egin{aligned} &A_i(\gamma^{(*)}p o n\pi^+) = \sqrt{2} \left(A_i^{(-)} + A_i^{(0)}
ight), \ &A_i(\gamma^{(*)}p o p\pi^0) = A_i^{(+)} + A_i^{(0)}, \ &A_i(\gamma^{(*)}n o p\pi^-) = -\sqrt{2} \left(A_i^{(-)} - A_i^{(0)}
ight), \ &A_i(\gamma^{(*)}n o n\pi^0) = A_i^{(+)} - A_i^{(0)}, \end{aligned}$$

expressed in terms of three isospin amplitudes (0), (+), and (-)

- 1. Number of diagrams
 - $\mathcal{O}(q^3)$: 15 tree-level diagrams + 50 one-loop diagrams
 - $\mathcal{O}(q^4)$: 20 tree-level diagrams + 85 one-loop diagrams
- 2. Calculate loop contributions numerically using CAS MATH-EMATICA with FeynCalc and LoopTools packages
- 3. Checks: Current conservation and crossing symmetry
- 4. LECs from other processes (mesonic and baryonic Lagrangians)

LEC	Source
l_3	$M_{\pi}=134.977{ m MeV}$
l_4 , l_6	pion form factor
c_1	proton mass $m_p = 938.272$ MeV
c_2 , c_3 , c_4	pion-nucleon scattering
<i>c</i> ₆ , <i>c</i> ₇	magnetic moment of proton ($\mu_p=2.793$)
	and neutron ($\mu_n = -1.913$)
d_6 , d_7 ,	world data for nucleon electromagnetic form factors
e_{54} , e_{74}	$(Q^2 < 0.3 \; { m GeV}^2)$
d_{16}	axial-vector coupling constant $g_A = 1.2695$
d_{18}	pion-nucleon coupling
d_{22}	axial radius of the nucleon $\langle r_A^2 angle = 12/M_A^2$,
	$M_A = 1.026 \text{ GeV}$

$$c_i$$
: $\mathcal{L}_{\pi N}^{(2)}$, d_i : $\mathcal{L}_{\pi N}^{(3)}$, e_i : $\mathcal{L}_{\pi N}^{(4)}$

5. Analytic expressions for the contact diagrams

(a) 4 LECs at $\mathcal{O}(q^3)$

isospin

$$\mathcal{L}_{\pi N}^{(3)} = \frac{d_8}{2m} \left(i \bar{\Psi} \epsilon^{\mu\nu\alpha\beta} \operatorname{Tr} \left(\tilde{f}_{\mu\nu}^+ u_\alpha \right) D_\beta \Psi + \text{H.c.} \right) \tag{+}$$

$$+rac{a_9}{2m}\left(iar{\Psi}\epsilon^{\mu
ulphaeta}\mathsf{Tr}\left(f^+_{\mu
u}+2v^{(s)}_{\mu
u}
ight)u_lpha D_eta\Psi+\mathsf{H.c.}
ight) \eqno(0)$$

$$-\frac{d_{20}}{8m^2}\left(i\bar{\Psi}\gamma^{\mu}\gamma_5\left[\tilde{f}^+_{\mu\nu},u_\lambda\right]D^{\lambda\nu}\Psi+\text{H.c.}\right) \tag{(-)}$$

$$+ i rac{a_{21}}{2} \bar{\Psi} \gamma^{\mu} \gamma_5 \left[ilde{f}^+_{\mu
u}, u^
u
ight] \Psi$$
 $(-)$

Structures contribute to photoproduction, no free parameters for electroproduction (b) 15 LECs at $\mathcal{O}(q^4)$

$$\mathcal{L}_{\pi N}^{(4)} = -\frac{e_{48}}{4m} \left(i \bar{\Psi} \operatorname{Tr} \left(f_{\lambda \mu}^{+} + 2 v_{\lambda \mu}^{(s)} \right) h_{\nu}^{\lambda} \gamma_{5} \gamma^{\mu} D^{\nu} \Psi + \text{H.c.} \right)$$

+ 14 more terms

- photoproduction
 isospin channel (0) (+) (-)
 # LECs
 5
 5
- electroproduction
 isospin channel (0) (+) (-)
 # LECs
 2
 2
- 6. Web interface chiral MAID

[http://www.kph.uni-mainz.de/MAID/chiralmaid/]

Ins	stitut für Kernphysik, Universität Mainz
	Mainz, Germany
6	A DECK
MAID2007	unitary isobar model for (e,e'p)
DMT2001	dynamical model for (e,e'p)
KAON-MAID	isobar model for (e,e'K)
ETA-MAID	isobar model for (e,e'h) reggeized isobar model for (g,h)
ChiralMAID ***	chiral perturbation theory approach for (e,e'p)
2-PION-MAID	isobar model for (g,pp)
archive	MAID2000 MAID2003 DMT2001original ETAprime2003

Pion Photo- and Electroproduction on the Nucleon in relativistic chiral pert	ChiralMAID info and updates (please read first) curbation theory
M. Hilt, S. Scherer, L. Tiator	
 Electromagnetic Multipoles (E_{1±}, M_{1±}, L_{1±}, S_{1±}) Amplitudes (F₁,,F₆, H₁,,H₆, A₁,,A₆) Differential Cross Sections (ds_T, ds_L, ds_{LT}, ds_{TT},) 5-fold Diff. Cross Section (d⁵s, G, ds^V = ds_T+e ds_L+e ds_{TT} cos 2f +) Total Cross Sections (s_T, s_L, s_{LT'}, s_{TT'},) Transverse Polarization Observables (ds/dW, T, S, P, E, F, G, H,) 	
External services: MAID Homepage MAID2003 DMT2001 KAON-MAID ETA-MAID2000 ETA-MAID2003 ETA'-MAID	
A1 kinematics calculator for electroproduction (Java) SAID Partial-Wave Analyses	
Back to Theory Group Homepage	

Multipoles

The multipoles can be given in 4 unique sets of isospin or charge channels (click here for a larger image):

$$\begin{pmatrix} A_{p}^{1/2}, A_{n}^{1/2}, A^{3/2} \end{pmatrix}, \begin{pmatrix} A^{1/2}, A^{0}, A^{3/2} \end{pmatrix}, \begin{pmatrix} A^{0}, A^{+}, A^{-} \end{pmatrix}, \begin{pmatrix} A_{\pi^{+}n}, A_{\pi^{-}p}, A_{\pi^{0}p}, A_{\pi^{0}n} \end{pmatrix} A_{\pi^{+}n} = \sqrt{2} \begin{pmatrix} A^{-} + A^{0} \end{pmatrix} = \sqrt{2} \begin{pmatrix} A_{p}^{1/2} - \frac{1}{3} A^{3/2} \end{pmatrix} = \sqrt{2} \begin{pmatrix} A^{0} + \frac{1}{3} A^{1/2} - \frac{1}{3} A^{3/2} \end{pmatrix} A_{\pi^{-}p} = -\sqrt{2} \begin{pmatrix} A^{-} - A^{0} \end{pmatrix} = \sqrt{2} \begin{pmatrix} A_{n}^{1/2} + \frac{1}{3} A^{3/2} \end{pmatrix} = \sqrt{2} \begin{pmatrix} A^{0} - \frac{1}{3} A^{1/2} + \frac{1}{3} A^{3/2} \end{pmatrix} A_{\pi^{0}p} = A^{+} + A^{0} = A_{p}^{1/2} + \frac{2}{3} A^{3/2} = A^{0} + \frac{1}{3} A^{1/2} + \frac{2}{3} A^{3/2} \\ A_{\pi^{0}n} = A^{+} - A^{0} = -A_{n}^{1/2} + \frac{2}{3} A^{3/2} = -A^{0} + \frac{1}{3} A^{1/2} + \frac{2}{3} A^{3/2}$$

Further details can be found in D. Drechsel and L. Tiator, J. Phys. G 18 (1992) 449-497. (scanned version)

Type of the multipoles: \circ (p(1/2), n(1/2), 3/2) \circ (1/2, 0, 3/2) \circ (0, +, -) \circ charge channels

Reduced multipoles:

Choose kinematical variables choose an independent (running) variable: $\bigcirc Q^2 \bigcirc W$ choose values for Q ² , W, step size and maximum value:									
Q² (GeV/c)²	W (MeV)		increment	upper value		click here			
0	1074		1	1100		Calculate		Reset	
Change of model parameters:									

Chiral MAID Multipoles

O(q ³) (all c	ouplings	s in (GeV ⁻²)					
	0			+	+				
	d9			d ₈		d ₂₀			d ₂₁
-1.2	216			-1.092		4.337			-4.260
$O(q^4)$ (all c	ouplings	s in (GeV ⁻³)					
Isospin (0								
e ₄₈		e ₄₉		e ₅₀	e ₅₁	e ₅₂	e ₅₃		e ₁₁₂
5.235		0.925		2.205	6.629	-4.103	-2.654		9.342
	+	Acc		Acc	A -4	A 70	A -70		A 440
-8 269		-0.925	_	-1.035	-4 352	10.539	2 120	_	-13 745
		-0.525		-1.000	-4.002	10.000	2.120		-13.743
e ₇₀)								
3.910	,	_							
					_				
Back to Pion Electroproduction Main Page									

e,gA,F[GeV],gpiN=gA*mp/F

e48,e49,e50,e51,e52,e53 [GeV^-3]

e67,e68,e69,e70,e71,e72,e73 [GeV^-3]

d8,d9,d20,d21 [GeV^-2]

e112,e113 [GeV^-3]

Multipoles

C h M A I D 2 0 1 2 M. Hilt, S. Scherer, L. Tiator Institut fuer Kernphysik, Universitaet Mainz

Pion angular momentum l= 0

All multipoles are given in 10^-3/Mpi+

W $E0+(pi0_p)$ E0+(pi0_n) E0+(pi+_n) E0+(pi-_p) E(lab) q(cm) (MeV) Re Re Re Re (MeV) (MeV) Im Im Im Im 1074.00 -1.0608 .0000 2.8400 .0000 27.1931 .0000 -32.7097 .0000 145.54 13.44 1075.00 26.9933 -.9960 .0000 2.8898 .0000 .0000 -32.4886 .0000 146.69 20.45 1076.00 -.9210 .0000 2.9504 .0000 26.7940 .0000 -32.2689 .0000 147.84 25.64 1077.00 -.8301 .0000 3.0279 26.5939 .0000 -32.0500 148.98 29.96 .0000 .0000 1078.00 -.7093 .0000 3.1376 .0000 26.3903 .0000 -31.8308 .0000 150.13 33.75 1079.00 .0000 -31.6058 37.18 -.4769 .0000 3.3685 .0000 26.1676 .0000 151.28 1080.00 -.3758 .3249 3.4564 .3534 25.9705 -.0617 -31.3900 .0215 152.43 40.33 1081.00 -.3959 .4764 3.4121 .5183 25.7986 -.0924 -31.1839 .0331 153.58 43.27 1082.00 3.3672 25.6292 -.1166 -30.9798 46.03 -.4162 .5891 .6412 .0430 154.74 1083.00 -.4367 .6826 3.3218 .7433 25.4625 -.1378 -30.7777 .0521 155.89 48.66 1084.00 -.4573 3.2758 .8323 25.2982 -.1573 -30.5776 157.04 51.16 .7641 .0609 1085.00 -.4780 .8371 3.2293 .9121 25.1364 -.1757 -30.3793 .0696 158.20 53.55 1086.00 -.4989 24.9770 .9035 3.1822 .9849 -.1933 -30.1829 .0782 159.36 55.86 1087.00 -.5199 .9649 3.1346 1.0523 24.8200 -.2104 -29.9883 .0868 160.52 58.08 -29.7954 1088.00 -.5410 1.0221 3.0864 1.1151 24.6654 -.2270 .0955 161.67 60.24 1089.00 -.5623 1.0758 3.0377 1.1741 24.5131 -.2433 -29.6042 .1043 162.83 62.33 1090.00 -.5837 1.1264 2.9884 1.2299 24.3630 -.2593 -29.4147 164.00 64.36 .1131 1091.00 -.6053 1.1745 2.9384 1.2828 24.2152 -.2752 -29.2268 .1220 165.16 66.34 1.2202 1092.00 -.6271 2.8880 1.3333 24.0695 -.2909 -29.0405 .1310 166.32 68.27

Fits to available experimental data

1.
$$\gamma + p \rightarrow p + \pi^0$$

2.
$$\gamma^* + p o p + \pi^0$$

3.
$$\gamma + p \rightarrow n + \pi^+$$
 and $\gamma + n \rightarrow p + \pi^-$

4.
$$\gamma^{(*)} + p
ightarrow n + \pi^+$$

Differential cross sections $d\sigma/d\Omega_\pi$ in μ b/sr for $\gamma+p
ightarrow p+\pi^{0\ 11}$

¹¹Data taken from D. Hornidge et al., Phys. Rev. Lett. **111**, 062004 (2013)

Differential cross sections $d\sigma/d\Omega_\pi$ in μ b/sr for $\gamma+p
ightarrow p+\pi^{0-12}$

¹²Data taken from D. Hornidge et al., Phys. Rev. Lett. 111, 062004 (2013)

S- and reduced P-wave multipoles for $\gamma + p
ightarrow p + \pi^0$

Red RChPT; green DMT model 13 ; black Gasparyan & Lutz 14 ; data from Hornidge et al. (2013)

¹³S. S. Kamalov et al., Phys. Rev. C **64**, 032201 (2001)

¹⁴A. Gasparyan and M. F. M. Lutz, Nucl. Phys. **A848**, 126 (2010)

Total cross sections for $\gamma^* + p \rightarrow p + \pi^0$ in μb

Differential cross sections as a function of Q^2 for $\gamma^* + p \rightarrow n + \pi^+$ at W = 1125 MeV and $\Theta_{\pi} = 0^{\circ}$.

red RChPT; green DMT model; data from Baumann (PhD thesis, JGU, 2005)

	Isospin channel	LEC	Value
	0	$d_9~[{ m GeV}^{-2}]$	-1.22 ± 0.12
	0	$e_{48}~[{ m GeV}^{-3}]$	5.2 ± 1.4
	0	$e_{49}~[{ m GeV}^{-3}]$	0.9 ± 2.6
	0	$0 \qquad e_{50} \; [{ m GeV}^{-3}]$	2.2 ± 0.8
	0	$e_{51}~[{ m GeV}^{-3}]$	6.6 ± 3.6
	0	$e^*_{52}~[{ m GeV}^{-3}]$	-4.1
	0	e_{53}^{*-} [GeV $^{-3}$]	-2.7
	0	$e_{112}~[{ m GeV}^{-3}]$	9.3 ± 1.6
from fits with all data	+	$d_8~[{ m GeV}^{-2}]$	-1.09 ± 0.12
nom nts with an uata	+	$e_{67}~[{ m GeV}^{-3}]$	-8.3 ± 1.5
	+	$e_{68}~[{ m GeV}^{-3}]$	-0.9 ± 2.6
	+	$e_{69}~[{ m GeV}^{-3}]$	-1.0 ± 2.2
	+	$e_{71} \; [{ m GeV}^{-3}]$	-4.4 ± 3.7
	+	$e^*_{72}~[{ m GeV}^{-3}]$	10.5
	+	e_{73}^{*-} [GeV $^{-3}$]	2.1
	+	$e_{113} \; [{ m GeV}^{-3}]$	-13.7 ± 2.6
	—	$d_{20}~[{ m GeV}^{-2}]$	4.34 ± 0.08
	—	$d_{21}~[{ m GeV}^{-2}]$	-3.1 ± 0.1
	—	$e_{70}~[{ m GeV}^{-3}]$	3.9 ± 0.3

- 4. Summary and outlook
 - Baryonic ChPT: Renormalization condition ↔ consistent power counting
 - Example: EOMS renormalization (manifestly Lorentz-invariant)
 - Application to pion photo- and electroproduction
 - 20 tree-level diagrams + 85 one-loop diagrams
 - Chiral MAID interface

- Inclusion of heavy degrees of freedom (vector mesons, axial vector mesons, Δ 15)
- New data $^{16} \rightsquigarrow$ reanalysis of LECs

¹⁵A. N. H. Blin, T. Ledwig and M. J. V. Vacas, arXiv:1412.4083 [hep-ph]

¹⁶K. Chirapatpimol *et al.*, $p(e, e'p)\pi^0$, Phys. Rev. Lett. **114**, 192503 (2015), I. Fricic, $p(e, e'\pi^+)n$, PhD thesis, University of Zagreb, 2015

 $\chi^2_{\rm red}$ as a function of the fitted energy range: RBChPT vs. HBChPT

Differential cross sections $d\sigma/d\Omega_{\pi}$ in μ b/sr for $\gamma + p \rightarrow p + \pi^{0-17}$

Black: RChPT $\mathcal{O}(q^4)$, red RChPT $\mathcal{O}(q^3)$, yellow HChPT $\mathcal{O}(q^4)$, green RChPT + vector mesons $\mathcal{O}(q^3)$

¹⁷Data taken from D. Hornidge et al., Phys. Rev. Lett. **111**, 062004 (2013)

Photon asymmetries for $\gamma + p
ightarrow p + \pi^{0-18}$

¹⁸Data taken from D. Hornidge et al., Phys. Rev. Lett. **111**, 062004 (2013)

¹⁹Data taken from D. Hornidge et al., Phys. Rev. Lett. **111**, 062004 (2013)

Multipoles

The multipoles can be given in 4 unique sets of isospin or charge channels (click here for a larger image):

$$\begin{pmatrix} A_{p}^{1/2}, A_{n}^{1/2}, A^{3/2} \end{pmatrix}, \begin{pmatrix} A^{1/2}, A^{0}, A^{3/2} \end{pmatrix}, \begin{pmatrix} A^{0}, A^{+}, A^{-} \end{pmatrix}, \begin{pmatrix} A_{\pi^{+}n}, A_{\pi^{-}p}, A_{\pi^{0}p}, A_{\pi^{0}n} \end{pmatrix} A_{\pi^{+}n} = \sqrt{2} \begin{pmatrix} A^{-} + A^{0} \end{pmatrix} = \sqrt{2} \begin{pmatrix} A_{p}^{1/2} - \frac{1}{3} A^{3/2} \end{pmatrix} = \sqrt{2} \begin{pmatrix} A^{0} + \frac{1}{3} A^{1/2} - \frac{1}{3} A^{3/2} \end{pmatrix} A_{\pi^{-}p} = -\sqrt{2} \begin{pmatrix} A^{-} - A^{0} \end{pmatrix} = \sqrt{2} \begin{pmatrix} A_{n}^{1/2} + \frac{1}{3} A^{3/2} \end{pmatrix} = \sqrt{2} \begin{pmatrix} A^{0} - \frac{1}{3} A^{1/2} + \frac{1}{3} A^{3/2} \end{pmatrix} A_{\pi^{0}p} = A^{+} + A^{0} = A_{p}^{1/2} + \frac{2}{3} A^{3/2} = A^{0} + \frac{1}{3} A^{1/2} + \frac{2}{3} A^{3/2} \\ A_{\pi^{0}n} = A^{+} - A^{0} = -A_{n}^{1/2} + \frac{2}{3} A^{3/2} = -A^{0} + \frac{1}{3} A^{1/2} + \frac{2}{3} A^{3/2}$$

Further details can be found in D. Drechsel and L. Tiator, J. Phys. G 18 (1992) 449-497. (scanned version)

Type of the multipoles: \circ (p(1/2), n(1/2), 3/2) \circ (1/2, 0, 3/2) \circ (0, +, -) \circ charge channels

Choose pion angular momentum I : 1 🗹 EI+ 🗆 EI- 🗆 MI+ 🗆 MI- 🖓 LI+ 🗆 LI- 🗆 SI+ 🗖 SI-

Reduced multipoles:

Choose kinematical variables choose an independent (running) variable: <a> Q ² C W choose values for Q ² , W, step size and maximum value:									
Q² (GeV/c)²	W (MeV)		increment	upper value		click here			
0	1080		0.01	0.1		Calculate		Reset	
Change of model parameters:									

e,gA,F[GeV],gpiN=gA*mp/F

e48,e49,e50,e51,e52,e53 [GeV^-3]

e67,e68,e69,e70,e71,e72,e73 [GeV^-3]

d8,d9,d20,d21 [GeV^-2]

e112,e113 [GeV^-3]

Multipoles

C h M A I D 2 0 1 2 M. Hilt, S. Scherer, L. Tiator Institut fuer Kernphysik, Universitaet Mainz

Pion angular momentum l= 1

All multipoles are given in 10^-3/Mpi+

W = 1080.000 (MeV)

.3028 1.2695 .0924 13.2100 -1.0920 -1.2160 4.3370 -4.2600 5.2350 .9250 2.2050 6.6290 -4.1030 -2.6540 -8.2690 -.9250 -1.0350 3.9100 -4.3520 10.5390 2.1200 9.3420-13.7450

Q^2	E1+(pi0_p)	E1+(r	oi0_n)	E1+(pi+_n)		E1+(p	pip)	E(lab)	q(Cm)
(GeV/c)^2	Re	Im	Re	Im	Re	Im	Re	Im	(MeV)	(MeV)
.00	0479	0001	0177	0002	1.4327	.0001	-1.4755	0001		
.01	0583	0001	0171	0002	1.4017	.0001	-1.4600	0001		
.02	0673	0001	0149	0001	1.3364	.0001	-1.4106	0001		
.03	0754	0001	0115	0001	1.2631	.0001	-1.3536	.0000		
.04	0831	0001	0071	0001	1.1903	.0001	-1.2977	.0000		
.05	0903	0001	0020	0001	1.1208	.0001	-1.2457	.0000		
.06	0973	0001	.0039	0001	1.0555	.0001	-1.1985	.0000		
.07	1040	0001	.0104	0001	.9944	.0001	-1.1561	.0000		
.08	1106	0001	.0174	0001	.9372	.0001	-1.1183	.0000		
.09	1171	0001	.0250	0001	.8836	.0001	-1.0845	.0000		
.10	1234	0001	.0331	0001	.8332	.0001	-1.0545	.0000		
0^2	T.1+(ni(n)	T,1+(r	oi() n)	τ.1+(p	i+ n)	T,1+(r	(a – ic	E(lab)	a(cm)
$(GeV/c)^2$	Re	гг, Тт	Re	Tm	Re	, 	Re		(MeV)	(MeV)
.00	0393	0001	0168	0001	.7782	.0000	8101	.0000	(,	(,
.01	0440	0001	0169	0001	.6088	.0000	6471	.0000		
.02	0468	.0000	0162	0001	.4781	.0000	5214	.0000		
.03	0486	.0000	0151	.0000	.3797	.0000	4271	.0000		
.04	0496	.0000	0138	.0000	.3047	.0000	3554	.0000		
.05	0501	.0000	0124	.0000	.2465	.0000	2998	.0000		