N^* Spectroscopy from Lattice QCD

Derek Leinweber

Baryon Spectrum: Hadron Spectrum Collaboration

Positive Parity Nucleon Spectrum: χQCD (U. Kentucky) Collaboration

Positive Parity Spectrum: Cypress (Twisted Mass) Collaboration: Feb. '13

Positive Parity Spectrum: Cypress (Twisted Mass) Collaboration: Jan. '14

Negative Parity Nucleon Spectrum: Cypress

Outline

Variational Analysis

Understanding and Resolving Discrepancies in the Nucleon Spectrum

Have we seen the Roper?

Wave Functions and Form Factors

Hamiltonian Effective Field Theory Model

The $\Lambda(1405)$ is a $\overline{K}N$ Molecule

Conclusion

ullet Consider a basis of interpolating fields χ_i

- Consider a basis of interpolating fields χ_i
- Construct the correlation matrix

$$G_{ij}(\mathbf{p};t) = \sum_{\mathbf{x}} e^{-i \mathbf{p} \cdot \mathbf{x}} \operatorname{tr} \left(\Gamma \left\langle \Omega | \chi_i(\mathbf{x}) \overline{\chi}_j(0) | \Omega \right\rangle \right).$$

- Consider a basis of interpolating fields χ_i
- Construct the correlation matrix

$$G_{ij}(\mathbf{p};t) = \sum_{\mathbf{x}} \mathrm{e}^{-\mathrm{i}\,\mathbf{p}\cdot\mathbf{x}} \operatorname{tr}\left(\,\Gamma\,\left\langle\Omega\right|\chi_{i}(x)\,\overline{\chi}_{j}(0)\left|\Omega\right\rangle\,\right).$$

• Seek linear combinations of the interpolators $\{\chi_i\}$ that isolate individual energy eigenstates, α , at momentum \mathbf{p} :

$$\phi^{\alpha} = v_i^{\alpha}(\mathbf{p}) \chi_i, \qquad \overline{\phi}^{\alpha} = u_i^{\alpha}(\mathbf{p}) \overline{\chi}_i.$$

• When successful, only state α participates in the correlation function, and one can write recurrence relations

$$G(\mathbf{p}; t_0 + \delta t) \mathbf{u}^{\alpha}(\mathbf{p}) = e^{-E_{\alpha}(\mathbf{p}) \delta t} G(\mathbf{p}; t_0) \mathbf{u}^{\alpha}(\mathbf{p})$$

$$\mathbf{v}^{\alpha\mathsf{T}}(\mathbf{p}) G(\mathbf{p}; t_0 + \delta t) = e^{-E_{\alpha}(\mathbf{p}) \delta t} \mathbf{v}^{\alpha\mathsf{T}}(\mathbf{p}) G(\mathbf{p}; t_0)$$

a Generalised Eigenvalue Problem (GEVP).

• When successful, only state α participates in the correlation function, and one can write recurrence relations

$$G(\mathbf{p}; t_0 + \delta t) \mathbf{u}^{\alpha}(\mathbf{p}) = e^{-E_{\alpha}(\mathbf{p}) \delta t} G(\mathbf{p}; t_0) \mathbf{u}^{\alpha}(\mathbf{p})$$

$$\mathbf{v}^{\alpha\mathsf{T}}(\mathbf{p}) G(\mathbf{p}; t_0 + \delta t) = e^{-E_{\alpha}(\mathbf{p}) \delta t} \mathbf{v}^{\alpha\mathsf{T}}(\mathbf{p}) G(\mathbf{p}; t_0)$$

- a Generalised Eigenvalue Problem (GEVP).
- Solve for the left, $\mathbf{v}^{\alpha}(\mathbf{p})$, and right, $\mathbf{u}^{\alpha}(\mathbf{p})$, generalised eigenvectors of $G(\mathbf{p}; t_0 + \delta t)$ and $G(\mathbf{p}; t_0)$.

Eigenstate-Projected Correlation Functions

Using these optimal eigenvectors, create eigenstate-projected correlation functions

$$G^{\alpha}(\mathbf{p};t) = \sum_{\mathbf{x}} e^{-i\,\mathbf{p}\cdot\mathbf{x}} \langle \Omega | \phi^{\alpha}(\mathbf{x}) \,\overline{\phi}^{\alpha}(0) | \Omega \rangle ,$$

$$= \sum_{\mathbf{x}} e^{-i\,\mathbf{p}\cdot\mathbf{x}} \langle \Omega | v_{i}^{\alpha}(\mathbf{p}) \,\chi_{i}(\mathbf{x}) \,\overline{\chi}_{j}(0) \,u_{j}^{\alpha}(\mathbf{p}) | \Omega \rangle ,$$

$$= \mathbf{v}^{\alpha \mathsf{T}}(\mathbf{p}) \,G(\mathbf{p};t) \,\mathbf{u}^{\alpha}(\mathbf{p}) .$$

$$G^{\alpha}(\mathbf{p};t) = A_{\alpha} \exp(-E_{\alpha}(\mathbf{p})t)$$
.

Eigenstate-Projected Correlation Functions

Using these optimal eigenvectors, create eigenstate-projected correlation functions

$$G^{\alpha}(\mathbf{p};t) = \sum_{\mathbf{x}} e^{-i\,\mathbf{p}\cdot\mathbf{x}} \langle \Omega | \phi^{\alpha}(\mathbf{x}) \,\overline{\phi}^{\alpha}(0) | \Omega \rangle ,$$

$$= \sum_{\mathbf{x}} e^{-i\,\mathbf{p}\cdot\mathbf{x}} \langle \Omega | v_{i}^{\alpha}(\mathbf{p}) \,\chi_{i}(\mathbf{x}) \,\overline{\chi}_{j}(0) \,u_{j}^{\alpha}(\mathbf{p}) | \Omega \rangle ,$$

$$= \mathbf{v}^{\alpha \mathsf{T}}(\mathbf{p}) \,G(\mathbf{p};t) \,\mathbf{u}^{\alpha}(\mathbf{p}) .$$

$$G^{\alpha}(\mathbf{p};t) = A_{\alpha} \exp(-E_{\alpha}(\mathbf{p})t)$$
.

• Here t is different from t_0 and δt and can become large.

• At zero momentum, the projected correlator is

$$G^{\alpha}(\mathbf{0};t) = A_{\alpha} \exp(-M_{\alpha} t)$$
.

• At zero momentum, the projected correlator is

$$G^{\alpha}(\mathbf{0};t) = A_{\alpha} \exp(-M_{\alpha} t)$$
.

Taking the log

$$\ln G^{\alpha}(\mathbf{0};t) = \ln (A_{\alpha}) - M_{\alpha} t.$$

· At zero momentum, the projected correlator is

$$G^{\alpha}(\mathbf{0};t) = A_{\alpha} \exp(-M_{\alpha} t)$$
.

Taking the log

$$\ln G^{\alpha}(\mathbf{0};t) = \ln (A_{\alpha}) - M_{\alpha} t.$$

• The effective mass is defined as

$$M_{ ext{eff}}^{lpha}(t) = rac{1}{\Delta t} \ln \left(rac{G^{lpha}(t)}{G^{lpha}(t+\Delta t)}
ight) \, .$$

• At zero momentum, the projected correlator is

$$G^{\alpha}(\mathbf{0};t) = A_{\alpha} \exp(-M_{\alpha} t)$$
.

Taking the log

$$\ln G^{\alpha}(\mathbf{0};t) = \ln (A_{\alpha}) - M_{\alpha} t.$$

• The effective mass is defined as

$$M_{ ext{eff}}^{lpha}(t) = rac{1}{\Delta t} \ln \left(rac{G^{lpha}(t)}{G^{lpha}(t+\Delta t)}
ight) \, .$$

• $\Delta t = 1$ or 2 is common.

Smeared Source to Point Sink Correlation Functions

Positive Parity Nucleon - First Excited State - m_π : 296 MeV

Positive Parity Nucleon - First Excited State - m_π : 296 MeV - $\chi^2_{
m dof}$: 0.67

Negative Parity Nucleon - 2nd Excited State - m_π : 156 MeV

Negative Parity Nucleon - 2nd Excited State - m_π : 156 MeV - $\chi^2_{ m dof}$: 0.88

Further Information

- "Roper Resonance in 2+1 Flavor QCD,"
 M. S. Mahbub, et al. [CSSM],
 Phys. Lett. B 707 (2012) 389
 arXiv:1011.5724 [hep-lat],
- "Low-lying Odd-parity States of the Nucleon in Lattice QCD,"
 M. Selim Mahbub, et al. [CSSM],
 Phys. Rev. D Rapid Comm. 87 (2013) 011501,
 arXiv:1209.0240 [hep-lat]
- "Structure and Flow of the Nucleon Eigenstates in Lattice QCD,"
 M. S. Mahbub, et al. [CSSM],
 Phys. Rev. D 87 (2013) 9, 094506
 arXiv:1302.2987 [hep-lat].
- Finn Stokes, et al. [CSSM], In preparation.

CSSM Simulation Details

Based on the PACS-CS (2+1)-flavour ensembles, available through the ILDG.

- S. Aoki et al (PACS-CS Collaboration), Phys. Rev. D 79, 034503 (2009)
- Lattice size of $32^3 \times 64$ with $\beta = 1.90$. $L \simeq 3$ fm.

CSSM Simulation Details

Based on the PACS-CS (2+1)-flavour ensembles, available through the ILDG.

- S. Aoki et al (PACS-CS Collaboration), Phys. Rev. D 79, 034503 (2009)
- Lattice size of $32^3 \times 64$ with $\beta = 1.90$. $L \simeq 3$ fm.
- 5 pion masses, ranging from 640 MeV down to 156 MeV.

CSSM Simulation Details

Based on the PACS-CS (2+1)-flavour ensembles, available through the ILDG.

- S. Aoki et al (PACS-CS Collaboration), Phys. Rev. D 79, 034503 (2009)
- Lattice size of $32^3 \times 64$ with $\beta = 1.90$. $L \simeq 3$ fm.
- 5 pion masses, ranging from 640 MeV down to 156 MeV.
- ullet The strange quark κ_s is held fixed as the light quark masses vary.
 - Changes in the strange quark contributions are environmental effects.

Positive Parity Nucleon Spectrum: CSSM

States Tracked via Orthogonal Eigenvectors

Positive Parity Nucleon Spectrum: CSSM

Comparison: Hadron Spectrum Collaboration (HSC)

"Excited state baryon spectroscopy from lattice QCD,"
 R. G. Edwards, J. J. Dudek, D. G. Richards and S. J. Wallace,
 Phys. Rev. D 84 (2011) 074508 arXiv:1104.5152 [hep-ph].

CSSM & HSC Comparison: Positive Parity CSSM

CSSM & HSC Comparison: Positive Parity CSSM

CSSM & HSC Comparison: Positive Parity

CSSM & HSC Comparison: Negative Parity CSSM

CSSM & HSC Comparison: Negative Parity

Positive Parity Nucleon Spectrum: χQCD (U. Kentucky) Collaboration

Positive Parity Nucleon Spectrum: χQCD (U. Kentucky) Collaboration

"The Roper Puzzle,"
 K. F. Liu, Y. Chen, M. Gong, R. Sufian, M. Sun and A. Li,
 PoS LATTICE 2013 (2014) 507
 arXiv:1403.6847 [hep-ph].

Positive Parity Nucleon Spectrum: χQCD (U. Kentucky) Collaboration

- "The Roper Puzzle,"
 K. F. Liu, Y. Chen, M. Gong, R. Sufian, M. Sun and A. Li,
 PoS LATTICE 2013 (2014) 507
 arXiv:1403.6847 [hep-ph].
- Ying Chen's talk in Tuesday's Parallel-B 26-2 at 16:30.

Essence of the Sequential Empirical Bayesian (SEB) Analysis

Essence of the Sequential Empirical Bayesian (SEB) Analysis

$\chi \mathrm{QCD}\ \&\ \mathrm{HSC}$ Systematic Comparison - Same Correlators Examined

Positive Parity Spectrum: Cypress (Twisted Mass) Collaboration: Feb. '13

Positive Parity Spectrum: Cypress (Twisted Mass) Collaboration: Jan. '14

d-quark probability density in ground state proton: $m_\pi=156$ MeV (CSSM)

d-quark probability density in first excited proton: $m_\pi=156$ MeV (CSSM)

Positive Parity Nucleon Spectrum: only small smearing: Cypress

Positive Parity Nucleon Spectrum: r_{RMS} smearing of 8.6 lu: Cypress

"Novel analysis method for excited states in lattice QCD: The nucleon case,"
C. Alexandrou, T. Leontiou, C. N. Papanicolas and E. Stiliaris, Phys. Rev. D 91 (2015) 1, 014506 arXiv:1411.6765 [hep-lat].

Does not rely on plateau identification of effective masses

- Does not rely on plateau identification of effective masses
- Exploits small time separations where the excited states contribute and statistical errors are small.

- Does not rely on plateau identification of effective masses
- Exploits small time separations where the excited states contribute and statistical errors are small.
- The Correlation matrix has the spectral decomposition

$$G_{ij}(t) = \sum_{lpha=0}^{N_{
m states}} A_i^lpha \, A_j^{\daggerlpha} \, e^{-E_lpha \, t} \, . \quad i,j=1,\ldots, N_{
m interpolators} \, .$$

- Does not rely on plateau identification of effective masses
- Exploits small time separations where the excited states contribute and statistical errors are small.
- The Correlation matrix has the spectral decomposition

$$G_{ij}(t) = \sum_{lpha=0}^{N_{
m states}} A_i^lpha \, A_j^{\daggerlpha} \, e^{-E_lpha \, t} \, . \quad i,j=1,\ldots, N_{
m interpolators} \, .$$

• Importance sampling is used to select fit parameters, A_i^{α} and E_{α} , with the probability $\exp(-\chi^2/2)$.

- Does not rely on plateau identification of effective masses
- Exploits small time separations where the excited states contribute and statistical errors are small.
- The Correlation matrix has the spectral decomposition

$$G_{ij}(t) = \sum_{lpha=0}^{N_{
m states}} A_i^lpha \, A_j^{\daggerlpha} \, e^{-E_lpha \, t} \, . \quad i,j=1,\ldots, N_{
m interpolators} \, .$$

- Importance sampling is used to select fit parameters, A_i^{α} and E_{α} , with the probability $\exp(-\chi^2/2)$.
 - $\circ\,$ A parallel tempering algorithm is used to avoid local minima traps.

- Does not rely on plateau identification of effective masses
- Exploits small time separations where the excited states contribute and statistical errors are small.
- The Correlation matrix has the spectral decomposition

$$G_{ij}(t) = \sum_{lpha=0}^{N_{
m states}} A_i^lpha \, A_j^{\daggerlpha} \, e^{-E_lpha \, t} \, . \quad i,j=1,\ldots, N_{
m interpolators} \, .$$

- Importance sampling is used to select fit parameters, A_i^{α} and E_{α} , with the probability $\exp(-\chi^2/2)$.
 - $\circ\,$ A parallel tempering algorithm is used to avoid local minima traps.
- Parameters are determined by fitting a Gaussian to their probability distributions.

- Does not rely on plateau identification of effective masses
- Exploits small time separations where the excited states contribute and statistical errors are small.
- The Correlation matrix has the spectral decomposition

$$G_{ij}(t) = \sum_{lpha=0}^{N_{
m states}} A_i^lpha \, A_j^{\daggerlpha} \, e^{-E_lpha \, t} \, . \quad i,j=1,\ldots, N_{
m interpolators} \, .$$

- Importance sampling is used to select fit parameters, A_i^{α} and E_{α} , with the probability $\exp(-\chi^2/2)$.
 - $\circ\,$ A parallel tempering algorithm is used to avoid local minima traps.
- Parameters are determined by fitting a Gaussian to their probability distributions.
- Increase $N_{\rm states}$ until there is no sensitivity to additional exponentials.

Determining $\textit{N}_{states} \equiv n_{max}$

(Cypress)

Analysis of Correlation Matrix is Essential

AMIAS applied to positive-parity Cypress results

Lowest-lying positive-parity N* Spectrum

Properties of the Positive Parity Nucleon Spectrum

d-quark probability density in ground state proton (CSSM)

Comparison with the Simple Quark Model - CSSM

SUBAT@MIC

d-quark probability density in 1st excited state of proton (CSSM)

d-quark probability density in 1st excited state of proton (CSSM)

d-quark probability density in 4th excited state of proton (CSSM)

Kaleidoscope

From the article:

Nucleon excited state wave functions from lattice QCD

Dale S. Roberts, Waseem Kamleh, and Derek B. Leinweber Phys. Rev. D **89**, 074501 (2014)

Form Factors of positive-parity nucleon excitations

Charge Radii of the Proton, Delta and "Roper"

Magnetic Moments of the Proton, Delta and "Roper"

Magnetic Moments of the odd-parity p^* , and n^*

 \bullet Comparison with quark model result of N. Sharma, et al. (2013). $_{63~of~124}$

References

- "Nucleon Excited State Wave Functions from Lattice QCD,"
 D. S. Roberts, W. Kamleh and D. B. Leinweber.
 Phys. Rev. D89 (2014) 074501 arXiv:1311.6626 [hep-lat]
- "Electromagnetic matrix elements for negative parity nucleons,"
 B. Owen, W. Kamleh, D. Leinweber, S. Mahbub and B. Menadue
 PoS LATTICE 2014 (2014) 159 arXiv:1412.4432 [hep-lat]
- "Probing the proton and its excitations in full QCD,"
 B. J. Owen, W. Kamleh, D. B. Leinweber, M. S. Mahbub and
 B. J. Menadue
 PoS LATTICE 2013 (2013) 277 arXiv:1312.0291 [hep-lat]

References

- "Nucleon Excited State Wave Functions from Lattice QCD,"
 D. S. Roberts, W. Kamleh and D. B. Leinweber.
 Phys. Rev. D89 (2014) 074501 arXiv:1311.6626 [hep-lat]
- "Electromagnetic matrix elements for negative parity nucleons,"
 B. Owen, W. Kamleh, D. Leinweber, S. Mahbub and B. Menadue
 PoS LATTICE 2014 (2014) 159 arXiv:1412.4432 [hep-lat]
- "Probing the proton and its excitations in full QCD,"
 B. J. Owen, W. Kamleh, D. B. Leinweber, M. S. Mahbub and
 B. J. Menadue
 PoS LATTICE 2013 (2013) 277 arXiv:1312.0291 [hep-lat]
- "Magnetic moments of the low-lying 1/2" octet baryon resonances,"
 N. Sharma, A. Martinez Torres, K. P. Khemchandani and H. Dahiya Eur. Phys. J. A 49 (2013) 11 [arXiv:1207.3311 [hep-ph]]

Finite-Volume Effect in N=2 excited state: $m_\pi=702$ MeV

Finite-Volume Effect in N=2 excited state: $m_\pi=570$ MeV

Finite-Volume Effect in N=2 excited state: $m_\pi=411$ MeV

Finite-Volume Effect in N=2 excited state: $m_\pi=296$ MeV

Finite-Volume Effect in N=2 excited state: $m_\pi=156$ MeV

Hamiltonian Effective Field Theory

 Zhan-Wei Liu, Jiajun Wu, et al. [CSSM] In preparation.

Hamiltonian Effective Field Theory

- Zhan-Wei Liu, Jiajun Wu, et al. [CSSM] In preparation.
- Jiajun Wu's talk in Wednesday's Parallel-B 27-1 at 15:30.

- Zhan-Wei Liu, Jiajun Wu, et al. [CSSM] In preparation.
- Jiajun Wu's talk in Wednesday's Parallel-B 27-1 at 15:30.
- J. M. M. Hall, et al. [CSSM]
 "Lattice QCD Evidence that the Λ(1405) Resonance is an
 Antikaon-Nucleon Molecule"
 Phys. Rev. Lett. 114, 132002 (2015). arXiv:1411.3402 [hep-lat]
- "On the Structure of the Λ(1405)",
 J. M. M. Hall, et al. [CSSM]
 PoS LATTICE 2014, 094 (2014). arXiv:1411.3781 [hep-lat]

Hamiltonian Effective Field Theory Model

• Consider the $\Lambda(1405)$.

Hamiltonian Effective Field Theory Model

- Consider the $\Lambda(1405)$.
- The four octet meson-baryon interaction channels of the $\Lambda(1405)$ are considered: $\pi\Sigma$, $\overline{K}N$, $K\Xi$ and $\eta\Lambda$.

- Consider the $\Lambda(1405)$.
- The four octet meson-baryon interaction channels of the $\Lambda(1405)$ are considered: $\pi\Sigma$, $\overline{K}N$, $K\Xi$ and $\eta\Lambda$.
- A single-particle state with bare mass, $m_0 + \alpha_0 m_\pi^2$ is also included.

- Consider the $\Lambda(1405)$.
- The four octet meson-baryon interaction channels of the $\Lambda(1405)$ are considered: $\pi\Sigma$, $\overline{K}N$, $K\Xi$ and $\eta\Lambda$.
- A single-particle state with bare mass, $m_0 + \alpha_0 \ m_\pi^2$ is also included.
- In a finite periodic volume, momentum is quantised to $n(2\pi/L)$.

Hamiltonian Effective Field Theory Model

- Consider the $\Lambda(1405)$.
- The four octet meson-baryon interaction channels of the $\Lambda(1405)$ are considered: $\pi\Sigma$, $\overline{K}N$, $K\Xi$ and $\eta\Lambda$.
- A single-particle state with bare mass, $m_0 + \alpha_0 m_\pi^2$ is also included.
- In a finite periodic volume, momentum is quantised to $n(2\pi/L)$.
- Working on a cubic volume of extent L on each side, it is convenient to define the momentum magnitudes

$$k_n = \sqrt{n_x^2 + n_y^2 + n_z^2} \frac{2\pi}{I}$$
,

with $n_i = 0, 1, 2, \dots$ and integer $n = n_x^2 + n_y^2 + n_z^2$.

Hamiltonian model, H_0

Denoting each meson-baryon energy by $\omega_{MB}(k_n) = \omega_M(k_n) + \omega_B(k_n)$, with $\omega_A(k_n) \equiv \sqrt{k_n^2 + m_A^2}$, the non-interacting Hamiltonian takes the form

$$H_0 = \begin{pmatrix} m_0 + \alpha_0 \, m_\pi^2 & 0 & 0 & \cdots \\ & \omega_{\pi \Sigma}(k_0) & & & & & \\ 0 & & \ddots & & & 0 & \cdots \\ & & & \omega_{\eta \Lambda}(k_0) & & & \\ & & & & \omega_{\pi \Sigma}(k_1) & & & \\ 0 & & 0 & & \ddots & & \cdots \\ & & & & \omega_{\eta \Lambda}(k_1) & & \\ \vdots & & \vdots & & \vdots & & \ddots \end{pmatrix}.$$

Hamiltonian model, H_I

• Interaction entries describe the coupling of the single-particle state to the two-particle meson-baryon states.

Hamiltonian model, H_i

- Interaction entries describe the coupling of the single-particle state

The eigenvalue equation corresponding to our Hamiltonian model is

$$\lambda = m_0 + \alpha_0 m_{\pi}^2 - \sum_{M,B} \sum_{n=0}^{\infty} \frac{g_{MB}^2(k_n)}{\omega_{MB}(k_n) - \lambda}.$$

with λ denoting the energy eigenvalue.

The eigenvalue equation corresponding to our Hamiltonian model is

$$\lambda = m_0 + \alpha_0 m_{\pi}^2 - \sum_{M,B} \sum_{n=0}^{\infty} \frac{g_{MB}^2(k_n)}{\omega_{MB}(k_n) - \lambda}.$$

with λ denoting the energy eigenvalue.

- As λ is finite, the pole in the denominator of the right-hand side is never accessed.
- The bare mass $m_0+\alpha_0\,m_\pi^2$ encounters self-energy corrections that lead to avoided level-crossings in the finite-volume energy eigenstates.

Eigenvalue Equation Form

The eigenvalue equation corresponding to our Hamiltonian model is

$$\lambda = m_0 + \alpha_0 m_{\pi}^2 - \sum_{M,B} \sum_{n=0}^{\infty} \frac{g_{MB}^2(k_n)}{\omega_{MB}(k_n) - \lambda}.$$

with λ denoting the energy eigenvalue.

- As λ is finite, the pole in the denominator of the right-hand side is never accessed.
- The bare mass $m_0 + \alpha_0 \ m_\pi^2$ encounters self-energy corrections that lead to avoided level-crossings in the finite-volume energy eigenstates.
- Reference to chiral effective field theory provides the form of $g_{MB}(k_n)$.

• The LAPACK software library routine dgeev is used to obtain the eigenvalues and eigenvectors of *H*.

- The LAPACK software library routine dgeev is used to obtain the eigenvalues and eigenvectors of H.
- The bare mass parameters m_0 and α_0 are determined by a fit to the lattice QCD results.

Hamiltonian model fit

Energy eigenstate, $|E\rangle$, basis $|state\rangle$ composition

Strange Magnetic Form Factor

• Provides direct insight into the possible dominance of a molecular $\overline{K}N$ bound state.

- Provides direct insight into the possible dominance of a molecular $\overline{K}N$ bound state.
- In forming such a molecular state, the $\Lambda(u, d, s)$ valence quark configuration is complemented by
 - A u, \overline{u} pair making a $K^-(s, \overline{u})$ proton (u, u, d) bound state, or
 - A d, \overline{d} pair making a $\overline{K}^0(s, \overline{d})$ neutron (d, d, u) bound state.

- Provides direct insight into the possible dominance of a molecular $\overline{K}N$ bound state.
- In forming such a molecular state, the $\Lambda(u, d, s)$ valence quark configuration is complemented by
 - o A u, \overline{u} pair making a $K^-(s, \overline{u})$ proton (u, u, d) bound state, or
 - A d, \overline{d} pair making a $\overline{K}^0(s, \overline{d})$ neutron (d, d, u) bound state.
- In both cases the strange quark is confined within a spin-0 kaon and has no preferred spin orientation.

- Provides direct insight into the possible dominance of a molecular $\overline{K}N$ bound state.
- In forming such a molecular state, the $\Lambda(u, d, s)$ valence quark configuration is complemented by
 - o A u, \overline{u} pair making a $K^-(s, \overline{u})$ proton (u, u, d) bound state, or
 - A d, \overline{d} pair making a $\overline{K}^0(s, \overline{d})$ neutron (d, d, u) bound state.
- In both cases the strange quark is confined within a spin-0 kaon and has no preferred spin orientation.
- To conserve parity, the kaon has zero orbital angular momentum.

- Provides direct insight into the possible dominance of a molecular $\overline{K}N$ bound state.
- In forming such a molecular state, the $\Lambda(u, d, s)$ valence quark configuration is complemented by
 - o A u, \overline{u} pair making a $K^-(s, \overline{u})$ proton (u, u, d) bound state, or
 - A d, \overline{d} pair making a $\overline{K}^0(s, \overline{d})$ neutron (d, d, u) bound state.
- In both cases the strange quark is confined within a spin-0 kaon and has no preferred spin orientation.
- To conserve parity, the kaon has zero orbital angular momentum.
- Thus, the strange quark does not contribute to the magnetic form factor of the $\Lambda(1405)$ when it is in a $\overline{K}N$ molecule.

\mathcal{G}_M for the $\Lambda(1405)$ at $Q^2 \sim 0.16\,\mathrm{GeV}^2$

Low-lying odd-parity nucleon (N^*) states

Non-interacting meson-baryon channels considered

Hamiltonian Model N* Spectrum: 3 fm

Hamiltonian Model N* Spectrum: 3 fm

Hamiltonian Model N* Spectrum: 2 fm

Volume Dependence of the N^* Spectrum

Hamiltonian Model N* Spectrum: 3 fm

Non-interacting meson-baryon channels considered

Hamiltonian Model N' Spectrum

Hamiltonian Model N' Spectrum

Hamiltonian N' Spectrum: Increased bare mass slope

Bare State Strength in the N' Spectrum: 3 fm

- A survey of the current literature resolves discrepancies among groups exploring the low-lying nucleon spectrum.
 - Results for low-lying nucleon excitations are forming a consensus.

- A survey of the current literature resolves discrepancies among groups exploring the low-lying nucleon spectrum.
 - Results for low-lying nucleon excitations are forming a consensus.
- The negative parity sector appears to be well understood.
 - Hamiltonian Effective Field Theory describes the spectrum well.

- A survey of the current literature resolves discrepancies among groups exploring the low-lying nucleon spectrum.
 - Results for low-lying nucleon excitations are forming a consensus.
- The negative parity sector appears to be well understood.
 - Hamiltonian Effective Field Theory describes the spectrum well.
 - o First results for form factors are consistent with model expectations

- A survey of the current literature resolves discrepancies among groups exploring the low-lying nucleon spectrum.
 - Results for low-lying nucleon excitations are forming a consensus.
- The negative parity sector appears to be well understood.
 - Hamiltonian Effective Field Theory describes the spectrum well.
 - o First results for form factors are consistent with model expectations
- Roper of the Constituent Quark Model has been seen on the lattice.
 - Node structure and density is similar to model expectations.

- A survey of the current literature resolves discrepancies among groups exploring the low-lying nucleon spectrum.
 - Results for low-lying nucleon excitations are forming a consensus.
- The negative parity sector appears to be well understood.
 - Hamiltonian Effective Field Theory describes the spectrum well.
 - o First results for form factors are consistent with model expectations
- Roper of the Constituent Quark Model has been seen on the lattice.
 - Node structure and density is similar to model expectations.
- The structure of the $\Lambda(1405)$ is dominated by a molecular bound state of an anti-kaon and a nucleon.

- A survey of the current literature resolves discrepancies among groups exploring the low-lying nucleon spectrum.
 - Results for low-lying nucleon excitations are forming a consensus.
- The negative parity sector appears to be well understood.
 - Hamiltonian Effective Field Theory describes the spectrum well.
 - First results for form factors are consistent with model expectations
- Roper of the Constituent Quark Model has been seen on the lattice.
 - Node structure and density is similar to model expectations.
- The structure of the $\Lambda(1405)$ is dominated by a molecular bound state of an anti-kaon and a nucleon.
- The Roper of Nature has yet to be seen in the light quark mass regime.

Supplementary Information

The following slides provide additional information which may be of interest.

Bare State Strength in the N^* Spectrum: 3 fm

Bare State Strength in the N' Spectrum: 3 fm

Volume Dependence of the N^* Spectrum

Volume Dependence of the N* Spectrum

Basis Interpolator Superposition for Nucleon Spectrum

Artistic view of $\Lambda(1405)$ Structure

103 of 124

We consider local three-quark operators with the correct quantum numbers for the Λ channel, including

Flavour-octet operators

$$\chi_{1}^{8} = \frac{1}{\sqrt{6}} \varepsilon^{abc} \left(2(u^{a}C\gamma_{5}d^{b})s^{c} + (u^{a}C\gamma_{5}s^{b})d^{c} - (d^{a}C\gamma_{5}s^{b})u^{c} \right)$$
$$\chi_{2}^{8} = \frac{1}{\sqrt{6}} \varepsilon^{abc} \left(2(u^{a}Cd^{b})\gamma_{5}s^{c} + (u^{a}Cs^{b})\gamma_{5}d^{c} - (d^{a}Cs^{b})\gamma_{5}u^{c} \right)$$

Flavour-singlet operator

$$\chi^{1} = 2\varepsilon^{abc} \left((u^{a}C\gamma_{5}d^{b})s^{c} - (u^{a}C\gamma_{5}s^{b})d^{c} + (d^{a}C\gamma_{5}s^{b})u^{c} \right)$$

We also use gauge-invariant Gaussian smearing to increase our operator basis.

- These results use 16 and 100 sweeps.
 - \circ Gives a 6 \times 6 matrix.

We also use gauge-invariant Gaussian smearing to increase our operator basis.

- These results use 16 and 100 sweeps.
 - \circ Gives a 6 \times 6 matrix.
- Also considered 35 and 100 sweeps.
 - Results are consistent with larger statistical uncertainties.

Volume dependence of the odd-parity Λ spectrum

Infinite-volume reconstruction of the $\Lambda(1405)$ energy

 Bootstraps are calculated by altering the value of each lattice data point by a Gaussian-distributed random number, weighted by the uncertainty.

Bootstrap outcomes

G_E for the $\Lambda(1405)$

When compared to the ground state, the results for \mathcal{G}_E are consistent with the development of a non-trivial $\overline{K}N$ component at light quark masses.

G_E for the $\Lambda(1405)$

When compared to the ground state, the results for \mathcal{G}_E are consistent with the development of a non-trivial $\overline{K}N$ component at light quark masses.

- Noting that the centre of mass of the $\overline{K}(s,\overline{\ell})$ $N(\ell,u,d)$ is nearer the heavier N,
 - $\circ~$ The anti–light-quark contribution, $\overline{\ell},$ is distributed further out by the \overline{K} and leaves an enhanced light-quark form factor.

\mathcal{G}_{E} for the $\Lambda(1405)$

G_E for the $\Lambda(1405)$

When compared to the ground state, the results for \mathcal{G}_E are consistent with the development of a non-trivial $\overline{K}N$ component at light quark masses.

- Noting that the centre of mass of the $\overline{K}(s,\overline{\ell})$ $N(\ell,u,d)$ is nearer the heavier N,
 - \circ The anti–light-quark contribution, $\overline{\ell},$ is distributed further out by the \overline{K} and leaves an enhanced light-quark form factor.
 - \circ The strange quark may be distributed further out by the \overline{K} and thus have a smaller form factor.

\mathcal{G}_{E} for the $\Lambda(1405)$

Hamiltonian model, H_I

 The form of the interaction is derived from chiral effective field theory.

$$g_{MB}(k_n) = \left(\frac{\kappa_{MB}}{16\pi^2 f_{\pi}^2} \frac{C_3(n)}{4\pi} \left(\frac{2\pi}{L}\right)^3 \omega_M(k_n) u^2(k_n)\right)^{1/2}.$$

• κ_{MB} denotes the SU(3)-flavour singlet couplings

$$\kappa_{\pi\Sigma} = 3\xi_0, \qquad \kappa_{\bar{K}N} = 2\xi_0, \qquad \kappa_{K\Xi} = 2\xi_0, \qquad \kappa_{\eta\Lambda} = \xi_0,$$

with $\xi_0=0.75$ reproducing the physical $\Lambda(1405) \to \pi \Sigma$ width.

Hamiltonian model, H_I

 The form of the interaction is derived from chiral effective field theory.

$$g_{MB}(k_n) = \left(\frac{\kappa_{MB}}{16\pi^2 f_{\pi}^2} \frac{C_3(n)}{4\pi} \left(\frac{2\pi}{L}\right)^3 \omega_M(k_n) u^2(k_n)\right)^{1/2}.$$

• κ_{MB} denotes the SU(3)-flavour singlet couplings

$$\kappa_{\pi\Sigma} = 3\xi_0, \qquad \kappa_{\bar{K}N} = 2\xi_0, \qquad \kappa_{K\Xi} = 2\xi_0, \qquad \kappa_{\eta\Lambda} = \xi_0,$$

with $\xi_0=0.75$ reproducing the physical $\Lambda(1405) o \pi \Sigma$ width.

• $C_3(n)$ is a combinatorial factor equal to the number of unique permutations of the momenta indices $\pm n_x$, $\pm n_y$ and $\pm n_z$.

Hamiltonian model, H_l

 The form of the interaction is derived from chiral effective field theory.

$$g_{MB}(k_n) = \left(\frac{\kappa_{MB}}{16\pi^2 f_{\pi}^2} \frac{C_3(n)}{4\pi} \left(\frac{2\pi}{L}\right)^3 \omega_M(k_n) u^2(k_n)\right)^{1/2}.$$

• κ_{MB} denotes the SU(3)-flavour singlet couplings

$$\kappa_{\pi\Sigma} = 3\xi_0, \qquad \kappa_{\bar{K}N} = 2\xi_0, \qquad \kappa_{K\Xi} = 2\xi_0, \qquad \kappa_{\eta\Lambda} = \xi_0,$$

with $\xi_0=0.75$ reproducing the physical $\Lambda(1405) \to \pi \Sigma$ width.

- $C_3(n)$ is a combinatorial factor equal to the number of unique permutations of the momenta indices $\pm n_x$, $\pm n_y$ and $\pm n_z$.
- $u(k_n)$ is a dipole regulator, with regularization scale $\Lambda = 0.8$ GeV.

Infinite-volume reconstruction of the $\Lambda(1405)$ energy

Excited State Form Factors

The eigenstate-projected three-point correlation function is

$$G_{\alpha}^{\mu}(\mathbf{p}',\mathbf{p};t_{2},t_{1}) = \sum_{\mathbf{x}_{1},\mathbf{x}_{2}} e^{-i\,\mathbf{p}'\cdot\mathbf{x}_{2}} e^{i(\mathbf{p}'-\mathbf{p})\cdot\mathbf{x}_{1}} \times \\ \times \langle \Omega|v_{i}^{\alpha}(\mathbf{p}')\,\chi_{i}(x_{2})j^{\mu}(x_{1})\,\overline{\chi}_{j}(0)\,u_{i}^{\alpha}(\mathbf{p})|\Omega\rangle \\ = \mathbf{v}^{\alpha\mathsf{T}}(\mathbf{p}')\,G_{ij}^{\mu}(\mathbf{p}',\mathbf{p};t_{2},t_{1})\,\mathbf{u}^{\alpha}(\mathbf{p})$$

where

$$G_{ij}^{\mu}(\mathbf{p}',\mathbf{p};t_2,t_1) = \sum_{\mathbf{x}_1,\mathbf{x}_2} e^{-i\,\mathbf{p}'\cdot\mathbf{x}_2} e^{i(\mathbf{p}'-\mathbf{p})\cdot\mathbf{x}_1} \langle \Omega | \chi_i(x_2) j^{\mu}(x_1) \,\overline{\chi}_j(0) | \Omega \rangle$$

is the matrix constructed from the three-point correlation functions of the original operators $\{\chi_i\}$.

Extracting Form Factors from Lattice QCD

 To eliminate the time dependence of the three-point correlation function, we construct the ratio

$$R_{\alpha}^{\mu}(\mathbf{p}',\mathbf{p};t_2,t_1) = \left(\frac{G_{\alpha}^{\mu}(\mathbf{p}',\mathbf{p};t_2,t_1) G_{\alpha}^{\mu}(\mathbf{p},\mathbf{p}';t_2,t_1)}{G_{\alpha}(\mathbf{p}';t_2) G_{\alpha}(\mathbf{p};t_2)}\right)^{1/2}$$

Extracting Form Factors from Lattice QCD

 To eliminate the time dependence of the three-point correlation function, we construct the ratio

$$R_{\alpha}^{\mu}(\mathbf{p}',\mathbf{p};t_2,t_1) = \left(\frac{G_{\alpha}^{\mu}(\mathbf{p}',\mathbf{p};t_2,t_1) G_{\alpha}^{\mu}(\mathbf{p},\mathbf{p}';t_2,t_1)}{G_{\alpha}(\mathbf{p}';t_2) G_{\alpha}(\mathbf{p};t_2)}\right)^{1/2}$$

To further simply things, we define the reduced ratio

$$\overline{R}_{\alpha}^{\mu} = \left(\frac{2E_{\alpha}(\mathbf{p})}{E_{\alpha}(\mathbf{p}) + m_{\alpha}}\right)^{1/2} \left(\frac{2E_{\alpha}(\mathbf{p}')}{E_{\alpha}(\mathbf{p}') + m_{\alpha}}\right)^{1/2} R_{\alpha}^{\mu}$$

Current Matrix Element for Spin-1/2 Baryons

The current matrix element for spin-1/2 baryons has the form

$$\langle p', s'|j^{\mu}|p, s\rangle = \left(\frac{m_{\alpha}^{2}}{E_{\alpha}(\mathbf{p})E_{\alpha}(\mathbf{p}')}\right)^{1/2} \times \\ \times \overline{u}(\mathbf{p}') \left(F_{1}(q^{2})\gamma^{\mu} + i F_{2}(q^{2}) \sigma^{\mu\nu} \frac{q^{\nu}}{2m_{\alpha}}\right) u(\mathbf{p})$$

Current Matrix Element for Spin-1/2 Baryons

The current matrix element for spin-1/2 baryons has the form

$$\langle p', s' | j^{\mu} | p, s \rangle = \left(\frac{m_{\alpha}^2}{E_{\alpha}(\mathbf{p}) E_{\alpha}(\mathbf{p}')} \right)^{1/2} \times \\ \times \overline{u}(\mathbf{p}') \left(F_1(q^2) \gamma^{\mu} + i F_2(q^2) \sigma^{\mu\nu} \frac{q^{\nu}}{2m_{\alpha}} \right) u(\mathbf{p})$$

 The Dirac and Pauli form factors are related to the Sachs form factors through

$$\mathcal{G}_{\mathsf{E}}(q^2) = F_1(q^2) - rac{q^2}{(2m^{lpha})^2} F_2(q^2) \ \mathcal{G}_{\mathsf{M}}(q^2) = F_1(q^2) + F_2(q^2)$$

SUBATOMIC

Sachs Form Factors for Spin-1/2 Baryons

- A suitable choice of momentum $(\mathbf{q} = (q, 0, 0))$ and the (implicit) Dirac matrices allows us to directly access the Sachs form factors:
 - \circ for \mathcal{G}_{E} : using Γ_4^\pm for both two- and three-point,

$$\mathcal{G}^{\alpha}_{\mathsf{E}}(q^2) = \overline{R}^4_{\alpha}(\mathbf{q}, \mathbf{0}; t_2, t_1)$$

 \circ for \mathcal{G}_{M} : using Γ_4^\pm for two-point and Γ_j^\pm for three-point,

$$|\varepsilon_{ijk} q^i| \mathcal{G}_{\mathsf{M}}^{\alpha}(q^2) = (\mathcal{E}_{\alpha}(\mathbf{q}) + m_{\alpha}) \overline{R}_{\alpha}^k(\mathbf{q}, \mathbf{0}; t_2, t_1)$$

where for positive parity states,

$$\Gamma_j^+ = rac{1}{2} egin{bmatrix} \sigma_j & 0 \ 0 & 0 \end{bmatrix} \qquad \Gamma_4^+ = rac{1}{2} egin{bmatrix} \mathbb{I} & 0 \ 0 & 0 \end{bmatrix}$$

and for negative parity states,

$$\Gamma_j^- = -\gamma_5 \Gamma_j^+ \gamma_5 = -\frac{1}{2} \begin{bmatrix} 0 & 0 \\ 0 & \sigma_j \end{bmatrix} \qquad \Gamma_4^- = -\gamma_5 \Gamma_4^+ \gamma_5 = -\frac{1}{2} \begin{bmatrix} 0 & 0 \\ 0 & \mathbb{I} \end{bmatrix}$$

Scattering State Contamination in Projected Correlator: CSSM

Negative Parity Nucleon: Five-quark Operators: CSSM

Negative Parity Nucleon Scattering Thresholds

- "Searching for low-lying multi-particle thresholds in lattice spectroscopy,"
 M. S. Mahbub, et al. [CSSM],
 Annals Phys. 342, 270 (2014)
 arXiv:1310.6803 [hep-lat]
- "Lattice baryon spectroscopy with multi-particle interpolators,"
 Adrian Kiratidis, Waseem Kamleh, Derek Leinweber, Benjamin Owen [CSSM]
 Phys. Rev. D 91, 094509 (2015)
 arXiv:1501.07667 [hep-lat].

Negative Parity Nucleon Spectrum: Lang and Verduci

Negative Parity Nucleon Spectrum: Lang and Verduci

• Small correlation matrix: $\chi_1 + \chi_2 \times 2$ smearings = 4 × 4

Negative Parity Nucleon Spectrum: Lang and Verduci

- Small correlation matrix: $\chi_1 + \chi_2 \times 2$ smearings = 4 × 4
- Did not construct projected correlators.
- Limited Euclidean time evolution prior to ill conditioning.

SUBATOMIC

Negative Parity Nucleon Spectrum: Lang and Verduci

- Small correlation matrix: $\chi_1 + \chi_2 \times 2$ smearings = 4 × 4
- Did not construct projected correlators.
- Limited Euclidean time evolution prior to ill conditioning.
- Adding $N\pi$ sufficient but not necessary. *cf.* Cypress Results. . .

Common Proton Interpolating Fields

• Many groups (BGR, Cypress, χ QCD, CSSM) consider the following local interpolating fields

$$\chi_1(x) = \epsilon^{abc} (u^{Ta}(x) C \gamma_5 d^b(x)) u^c(x),$$

$$\chi_2(x) = \epsilon^{abc}(u^{Ta}(x) C d^b(x)) \gamma_5 u^c(x).$$

d-quark density in 1st excited state of proton: Lower Dirac Component

Hybrid Baryons: Hadron Spectrum Collaboration

