Overview of latest results with Constituent Quark Models

E. Santopinto INFN Department of Physics Genova University

N* 2015, Osaka, May 2015

Outline of the talk

The Models & hCQM and In.tqDiqM (see Hugo
Garcia T. Talk)

- The helicity amplitudes
- The elastic e.m. form factors of the nucleon

The Unquenched Quark Model (higher Fock components in a systematic way) (see Hugo Garcia T.) talk) The Model (hCQM)

hypercentral Constituent Quark Model

different CQMs for bayons

	Kin. Energy	SU(6) inv	SU(6) viol	date
Isgur-Karl	non rel	h.o. + shift	OGE	1978-9
Capstick-Isgur	rel	string + coul-like	OGE	1986
U(7) B.I.L.	rel M^2	vibr+L	Guersey-R	1994
Нур. О(6)	non rel/rel	hyp.coul+linear	OGE	1995
Glozman Riska	non rel/rel Plessas	h.o./linear	GBE	1996
Bonn	rel	linear 3-body	instanton	2001

Hypercentral Constituent Quark Model hCQM

free parameters fixed from the spectrum

Comment

The description of the spectrum is the first task of a model builder

Predictions for: photocouplings transition form factors elastic from factors

.....

describe data (if possible) understand what is missing LQCD (De Rújula, Georgi, Glashow, 1975)

the quark interaction contains a long range spin-independent term a short range spin dependent term

Spin-independence \rightarrow SU(6) configurations

SU(6) configurations for three quark states

$$6 \ge 6 \ge 6 \ge 6 = 20 + 70 + 70 + 56$$

A M M S

Notation

 (d, L^{π})

 $d = \dim \text{ of } SU(6) \text{ irrep}$ L = total orbital angular momentum $\pi = \text{ parity}$

Hasenfratz et al. 1980: $\Sigma V(r_i, r_j)$ is approximately hypercentral

• QCD fundamental mechanism

3-body forces

Carlson et al, 1983 Capstick-Isgur 1986 hCQM 1995

• Flux tube model

Results (predictions) with the Hypercentral Constituent Quark Model

for

Helicity amplitudes

□ Elastic nucleon form factors

The helicity amplitudes

HELICITY AMPLITUDES

Extracted from electroproduction of mesons

Definition

$$\begin{aligned} A_{1/2} &= \langle N^* J_z = 1/2 | H^T_{em} | N J_z = -1/2 \rangle \\ A_{3/2} &= \langle N^* J_z = 3/2 | H^T_{em} | N J_z = 1/2 \rangle \\ S_{1/2} &= \langle N^* J_z = 1/2 | H^L_{em} | N J_z = 1/2 \rangle \end{aligned}$$

N, N* nucleon and resonance as 3q states $H_{em}^{T} H_{em}^{l}$ model transition operator

§ results for the negative parity resonances: M. Aiello, M.G., E. Santopinto J. Phys. G24, 753 (1998)

Systematic predictions for transverse and longitudinal amplitudes E. Santopinto et al., Phys. Rev. C86, 065202 (2012)

Proton and neutron electro-excitation to 14 resonances

N(1520) 3/2⁻ transition amplitudes

065202 (2012)

Neutron photocouplings A_{1/2} hCQM A_{1/2} Bonn 50 A_{1/2} (10⁻³ GeV^{-1/2}) 0 -50 -100

 $N(1440 \quad N(1520) \quad N(1525) \quad N(1650) \quad N(1675 \quad N(1680) \quad N(1710) \quad N(1720)$

hCQM: E. Santopinto, M.G. Phys. Rev. C86, 065202 (2012) Bonn: A.V. Anisovich et al., EPJ A49, 67 (2013)

E. Santopinto, M.Giannini, Phys. Rev. C86, 065202 (2012)

E. Santopinto, M.Giannini, Phys. Rev. C86, 065202 (2012)

- The hCQM seems to provide realistic three-quark wave functions
- The main reason is the presence of the hypercoulomb term

Solvable model

 $V(x) = -\tau/x + \alpha x$ linear term treated as a perturbation wf mainly concentrated in the low x region

energy levels expressed analytically
unperturbed wf given by the 1/x term
major contribution to the helicity amplitudes

Good results due to semplicity

E. Santopinto, F. Iachello, M.Giannini, Eur. Phys. J. A 1, 307 (1998)

The nucleon elastic form factors

- elastic scattering of polarized electrons on polarized protons
- measurement of polarizations asymmetry gives directly the ratio G^{p}_{E}/G^{p}_{M}
- discrepancy with Rosenbluth data (?)
- linear and strong decrease
- pointing towards a zero (!)
- latest data seem to confirm the behaviour

RELATIVITY

Various levels

- relativistic kinetic energy
- Lorentz boosts
- Relativistic dynamics
- quark-antiquark pair effects (meson cloud)
- relativistic equations (BS, DS)

Point Form Relativistic Dynamics

Point Form is one of the Relativistic Hamiltonian Dynamics for a fixed number of particles (Dirac)

Construction of a representation of the Poincaré generators P_{μ} (tetramomentum), J_k (angular momenta), K_i (boosts) obeying the Poincaré group commutation relations in particular

 $[P_k, K_i] = i \delta_{kj} H$

Three forms: Light (LF), Instant (IF), Point (PF) Differ in the number and type of (interaction) free generators Point form: P_{μ} interaction dependent
 J_k and K_i freeComposition of angular momentum states as in the
non relativistic case

Mass operator $M = M_0 + M_I$

$$\mathbf{M}_0 = \boldsymbol{\Sigma}_i \sqrt{\mathbf{p}_i^2 + m^2} \qquad \boldsymbol{\Sigma}_i \mathbf{p}_i = 0$$

 $\vec{\mathbf{P}}_{i}$ undergo the same Wigner rotation -> M₀ is invariant Similar reasoning for the hyperradius

The eigenstates of the relativistic hCQM are interpreted as eigenstates of the mass operator M

Moving three-quark states are obtained through (interaction free) Lorentz boosts (velocity states)

Ricco ,,et al., PR **D67**, 094004 (2003)

De Sanctis, Giannini, Santopinto, Vassallo Phys. Rev. C76, 062201 (2007)

E. Santopinto, A. Vassallo, M. M. Giannini, and M. De Sanctis, Phys. Rev. C 82, 065204 (2010)

E. Santopinto, A. Vassallo, M. M. Giannini, and M. De Sanctis, Phys. Rev. C 82, 065204 (2010)

Relativistic hCQM In Point Form

Y.B. Dong, M.Giannini., E. Santopinto,A. Vassallo,Few-Body Syst. 55 (2014) 873-876
please note

- the medium Q² behaviour is fairly well reproduced
- there is lack of strength at low Q² (outer region) in the e.m. transitions
- emerging picture:
 - quark core plus (meson or sea-quark) cloud

The Interacting Quark Diquark Model

the Interacting qD model E. Santopinto, PRC72, 022201 (2005)

Hamiltonian

$$H = \frac{p^2}{2m} - \frac{\tau}{r} + \beta r + [B\delta_{S_{12},1} + C\delta_0] + (-1)^{l+1} 2Ae^{-\alpha r} [(\vec{s}_{12} \cdot \vec{s}_3) + (\vec{t}_{12} \cdot \vec{t}_3) + (\vec{s}_{12} \cdot \vec{s}_3)(\vec{t}_{12} \cdot \vec{t}_3)]$$

- Non-rel. Kinetic energy + Coulomb + linear confining terms
- Splitting between scalar & axial-vector diquarks
- Exchange potential

Rel. Interacting qD model J. Ferretti, E. Santopinto & A. Vassallo, PRC83, 065204 (2011)

Relativistic extension of the previous model (point-form formalism).

$$\begin{split} M &= E_0 + \sqrt{q^2 + m_1^2} + \sqrt{q^2 + m_2^2} + M_{\rm dir}(r) \\ &+ M_{\rm cont}(r) + M_{\rm ex}(r), & M_{\rm dir}(r) = -\frac{\tau}{r}(1 - e^{-\mu r}) + \beta r. \\ M_{\rm ex}(r) &= (-1)^{l+1}e^{-\sigma r}[A_S(\vec{s}_1 \cdot \vec{s}_2) + A_I(\vec{t}_1 \cdot \vec{t}_2) \\ &+ A_{SI}(\vec{s}_1 \cdot \vec{s}_2)(\vec{t}_1 \cdot \vec{t}_2)], \\ M_{\rm cont} &= \left(\frac{m_1m_2}{E_1E_2}\right)^{1/2+\epsilon} \frac{\eta^3 D}{\pi^{3/2}}e^{-\eta^2 r^2} \,\delta_{L,0}\delta_{s_1,1} \left(\frac{m_1m_2}{E_1E_2}\right)^{1/2+\epsilon} \end{split}$$

- Numerical solution with variational program
- Parameters fitted to nonstrange baryon spectrum

Rel. Interacting qD model

J. Ferretti, E. Santopinto & A. Vassallo, PRC83, 065204 (2011)

Resonance	Status	M ^{expt} (MeV)	J^P	L^{P}	S	<i>s</i> ₁	n_r	M ^{calc} (MeV)
N(939) P ₁₁	****	939	$\frac{1}{2}^{+}$	0+	$\frac{1}{2}$	0	0	939
$N(1440) P_{11}$	****	1420-1470	$\frac{1}{2}^{+}$	0^{+}	$\frac{1}{2}$	0	1	1513
$N(1520) D_{13}$	****	1515-1525	$\frac{3}{2}^{-}$	1-	$\frac{1}{2}$	0	0	1527
$N(1535) S_{11}$	****	1525-1545	$\frac{1}{2}^{-}$	1-	$\frac{1}{2}$	0	0	1527
$N(1650) S_{11}$	****	1645-1670	$\frac{1}{2}^{-}$	1-	$\frac{1}{2}, \frac{3}{2}$	1	0	1671
$N(1675) D_{15}$	****	1670-1680	$\frac{5}{2}^{-}$	1-	$\frac{3}{2}$	1	0	1671
$N(1680) F_{15}$	****	1680-1690	$\frac{5}{2}^{+}$	2^{+}	$\frac{1}{2}$	0	0	1808
$N(1700) D_{13}$	***	1650-1750	$\frac{3}{2}^{-}$	1-	$\frac{1}{2}, \frac{3}{2}$	1	0	1671
$N(1710) P_{11}$	***	1680-1740	$\frac{1}{2}^{+}$	0^{+}	$\frac{1}{2}$	1	0	1768
$N(1720) P_{13}$	****	1700-1750	$\frac{3}{2}^{+}$	0^{+}	$\frac{\overline{3}}{2}$	1	0	1768
$\Delta(1232) \ P_{33}$	****	1231-1233	$\frac{3}{2}^{+}$	0^{+}	$\frac{3}{2}$	1	0	1233
$\Delta(1600) P_{33}$	***	1550-1700	$\frac{3}{2}^{+}$	0^{+}	$\frac{\overline{3}}{2}$	1	1	1602
$\Delta(1620) S_{31}$	****	1600-1660	$\frac{1}{2}^{-}$	1-	$\frac{1}{2}$	1	0	1554
$\Delta(1700) \: D_{33}$	****	1670-1750	$\frac{3}{2}^{-}$	1-	$\frac{1}{2}$	1	0	1554
$\Delta(1900)\;S_{31}$	**	1850-1950	$\frac{1}{2}^{-}$	1-	$\frac{1}{2}$	1	1	1986
$\Delta(1905)\;F_{35}$	****	1865-1915	$\frac{5}{2}^{+}$	2+	$\frac{3}{2}$	1	0	1952
$\Delta(1910) P_{31}$	****	1870-1920	$\frac{1}{2}^{+}$	2+	$\frac{3}{2}$	1	0	1952
$\Delta(1920) P_{33}$	***	1900-1970	$\frac{3}{2}^{+}$	2+	$\frac{3}{2}$	1	0	1952
$\Delta(1930) D_{35}$	***	1900-2020	$\frac{5}{2}^{-}$	1-	$\frac{3}{2}$	1	0	2005
$\Delta(1950) F_{37}$	****	1915-1950	$\frac{7}{2}^{+}$	2+	$\frac{3}{2}$	1	0	1952
$N(2100) P_{11}$	*	1855-1915	$\frac{1}{2}^{+}$	0^{+}	$\frac{1}{2}$	0	2	1893
$N(2090) S_{11}$	*	1869–1987	$\frac{1}{2}^{-}$	1-	$\frac{1}{2}$	0	1	1882
$N(1900) P_{13}$	**	1820–1974	$\frac{3}{2}^{+}$	2+	$\frac{1}{2}$	0	0	1808
$N(2080) D_{13}$	**	1740-1940	$\frac{3}{2}^{-}$	1-	$\frac{1}{2}$	0	1	1882
$\Delta(1750) P_{31}$	*	1708-1780	$\frac{1}{2}^{+}$	0^{+}	$\frac{1}{2}$	1	0	1858
$\Delta(1940) \: D_{33}$	*	1947–2167	$\frac{3}{2}^{-}$	1-	$\frac{1}{2}$	1	1	1986

0 missing resonances below 2 GeV

Model Parameters

$m_a = 200 \text{ MeV}$	$m_s = 600 \mathrm{MeV}$	$m_{AV} = 950 \text{ MeV}$
$\tau = 1.25$	$\mu = 75.0 \text{ fm}^{-1}$	$\beta = 2.15 \text{ fm}^{-2}$
$A_{\delta} = 375 \text{ MeV}$	$A_I = 260 \text{ MeV}$	$A_{SI} = 375 \text{ MeV}$
$\sigma = 1.71 \text{ fm}^{-1}$	$E_0 = 154 \text{ MeV}$	$D = 4.66 \text{fm}^2$
$\eta = 10.0 \text{ fm}^{-1}$	$\epsilon = 0.200$	

Rel. Interacting qD model – strange B.

E. Santopinto & J. Ferretti, arXiv: 1412.7571

Model

- Model extended to strange sector
- Hamiltonian:

$$M = E_0 + \sqrt{\vec{q}^2 + m_1^2} + \sqrt{\vec{q}^2 + m_2^2} + M_{\text{dir}}(r) + M_{\text{ex}}(r) M_{\text{ex}}(r) = (-1)^{L+1} e^{-\sigma r} [A_S \vec{s}_1 \cdot \vec{s}_2 + A_F \vec{\lambda}_1^f \cdot \vec{\lambda}_2^f + A_I \vec{t}_1 \cdot \vec{t}_2]$$

$$M_{\text{dir}}(r) = -\frac{\tau}{r} (1 - e^{-\mu r}) + \beta r.$$

- Gursey-Radicati inspired exchange interaction
- Parameters fitted to strange baryon spectrum

Rel. Interacting qD model – strange B. E. Santopinto & J. Ferretti, arXiv: 1412.7571

Parameters

Parameter	Value (Fit 1)	Value (Fit 2)	Parameter	Value (Fit 1)	Value (Fit 2)
m_n $m_{[n,n]}$ $m_{\{n,n\}}$ $m_{\{s,s\}}$ μ A_S A_I E_0 D	200 MeV 600 MeV 950 MeV 1580 MeV 75.0 fm ⁻¹ 350 MeV 250 MeV 141 MeV 6.13 fm ²	159 MeV 607 MeV 963 MeV 1352 MeV 28.4 fm ⁻¹ -436 MeV 791 MeV 150 MeV	m_s $m_{[n,s]}$ $m_{\{n,s\}}$ au β A_F σ ϵ η	550 MeV 900 MeV 1200 MeV 1.20 2.15 fm ⁻² 100 MeV 2.30 fm ⁻¹ 0.37 11.0 fm ⁻¹	213 Mev 856 MeV 1216 MeV 1.02 2.36 fm ⁻² 193 MeV 2.25 fm ⁻¹ –
2			,,		

Rel. Interacting qD model – strange B.

E. Santopinto & J. Ferretti, arXiv: 1412.7571

Rel. Interacting qD model E. Santopinto & J. Ferretti, arXiv: 1412.7571

Lambda & Lambda* states

Rel. Interacting qD model – strange sector

E. Santopinto & J. Ferretti, arXiv: 1412.7571

Ratio $\mu_p G_E^p/G_M^p$

De Sanctis, Ferretti, Santopinto, Vassallo, Phys. Rev. C 84, 055201 (2011)

Interacting Quark Diquark model, E. Santopinto, Phys. Rev. C 72, 022201(R) (2005)

Unquenching the quark model & Why Unquenching?

E. .Santopinto,. Bijker PRC 80, 065210 (2009), PRC 82, 062202 (2010); J. Ferrettii, Santopinto, Bijker Phys. Rev. C 85, 035204 (2012)

Many versions of CQMs have been developed (IK, CI, GBE, U(7), hCQM, Bonn, etc.) non relativistic and relativistic While these models display peculiar features, they share the following main features : the effective degrees of freedom of 3q and a confining potential the underling O(3) SU(3) symmetry All of them are able to give a good description of the 3 and 4 stars spectrum

CQMs:

S

Good description of the spectrum and magnetic moments

Predictions of many quantities: strong couplins photocouplings helicity amplitudes elastic form factors structure functions

Based on the effective degrees of freedom of 3 constituent quarks

Is it a degrees of freedom problem?

$q\bar{q}$ corrections? important in the outer region

Considering also CQMs for mesons, CQMs able to reproduce the overall trend of hundred of data

- ... but they show very similar deviations for observables such as
- photocouplings
- helicity amplitudes,

please note

- the medium Q² behaviour is fairly well reproduced
- there is lack of strength at low Q² (outer region) in the e.m. transitions
- emerging picture:
 - quark core plus (meson or sea-quark) cloud

There are two possibilities:

phenomenological parametrization

microscopic explicit quark description

Two main approaches

• the physical nucleon N is made of a bare nucleon dressed by a surrounding meson cloud

$$|\tilde{N}\rangle = \Psi_{(3q)}^{N} |N(qqq)\rangle + \sum_{B,M} \Psi_{(3q)(q\bar{q})}^{(BM)} |B(qqq)M(q\bar{q})\rangle + \cdots$$

Problems of inconsistency

• Introducing higher Fock components

$$|\Psi\rangle = \Psi_{3q} |qqq\rangle + \Psi_{3q\,q\bar{q}} |3q\,q\bar{q}\rangle$$

Consistency ok But: how many components?

Necessity of unquenching the quark model

Exotic Degrees of Freedom

- Quark-antiquark pairs: pentaquarks, meson cloud models (Thomas, Speth, Kaiser, Weise, Oset, Brodsky, Ma, Isgur, ...)
- Higher-Fock components (Riska, Zou, ...)

$$\psi = \psi(q^3) + \alpha \,\psi(q^3 - q\bar{q})$$

Extend the CQM to include the effects of quark-antiquark pairs in a general and consistent way

Problems

1) find a quark pair creation mechanism QCD inspired

2) implementation of this mechanism at the quark level but in such a way to

do not destroy the good CQMs results

Unquenched Quark Model

Strange quark-antiquark B C h.o. wave functions

Tornqvist & Zenczykowski (1984) Geiger & Isgur, PRD 55, 299 (1997) Isgur, NPA 623, 37 (1997)

- Pair-creation operator with ${}^{3}P_{0}$ quantum numbers of vacuum
- Important: sum over a large tower of intermediate states to preserve the phenomenological success of CQM

Geiger & Isgur, PRD 55, 299 (1997)

It would be desirable to devise tests of the mechanisms underlying the delicate cancellations which conspire to hide the effects of the sea in the picture presented here. It also seems very worthwhile to extend this calculation to uu and dd loops. Such an extension could reveal the origin of the observed violations [38] of the Gottfried sum rule [39] and also complete our understanding of the origin of the spin crisis. From our previous calculations [4], the effects of "un-

Extensions

Bijker & Santopinto, PRC 80, 065210 (2009)

- Any initial baryon or baryon resonance
- Any flavor of the quark-antiquark pair
- Any model of baryons and mesons

Formalism

Unquenched Quark Model

- Harmonic oscillator quark model
- Sum over intermediate meson-baryon states includes for each oscillator shell all possible spin-flavor states
- Oscillator size parameters taken for baryons and mesons taken from literature (Capstick, Isgur, Karl)
- Smearing of the pair-creation vertex (Geiger, Isgur)
- Strength of ³P₀ coupling taken from literature on strong decays of baryons (Capstick, Roberts)
- No attempt to optimize the parameters

Unquenching the quark model

Mesons P. Geiger, N. Isgur, Phys. Rev. D41, 1595 (1990) D44, 799 (1991)

Unquenched Quark Model

Strange guark-antiguark B C D D C h.o. wave functions Torngvist & Zenczykowski (198

Tornqvist & Zenczykowski (1984) Geiger & Isgur, PRD 55, 299 (1997) Isgur, NPA 623, 37 (1997)

• Pair-creation operator with ${}^{3}P_{0}$ guantum numbers of vacuum

The good magnetic moment results of the CQM are preserved by the UCQM

Bijker, Santopinto, Phys. Rev. C80:065210, 2009.

FIG. 3. (Color online) Magnetic moments of octet baryons: experimental values from the Particle Data Group [34] (circles), CQM (squares), and unquenched quark model (triangles).

Flavor Asymmetry

Gottfried sum rule

$$S_G = \int_0^1 dx \frac{F_{2p}(x) - F_{2n}(x)}{x} = \frac{1}{3} - \frac{2}{3} \int_0^1 dx \left[\bar{d}(x) - \bar{u}(x) \right]$$

$$S_G \neq \frac{1}{3} \Rightarrow N_{\overline{d}} \neq N_{\overline{u}}$$

 $S_G = 0.2281 \pm 0.0065$

$$\int_{0}^{1} dx \left[\bar{d}(x) - \bar{u}(x) \right] = 0.16 \pm 0.01$$

Proton Flavor asymmetry

Santopinto, Bijker, PRC 82,062202(R) (2010)

Flavor asymmetry of the octect baryons in the UCQM

Santopinto, Bijker, PRC 82,062202(R) (2010)

Figure 1. Flavor asymmetry of octet baryons

Pauli blocking (Field & Feynman, 1977) too small Pion dressing of the nucleon (Thomas et al., 1983) Meson cloud models

Flavor asymmetries of octect baryons

Santopinto, Bijker, PRC 82,062202(R) (2010)

Model	$\mathcal{A}(\Sigma^+)/\mathcal{A}(p)$	$\mathcal{A}(\Xi^0)/\mathcal{A}(p)$	Ref.
Unquenched CQM	0.833	-0.005	present
Chiral QM	2	1	Eichen
Balance model	3.083	2.075	V I 7h and
Octet couplings	0.353	-0.647	YJ Zhang
			Alberg

TABLE III. Relative flavor asymmetries of octet baryons.

 $\Sigma^{\pm} p \rightarrow \ell^{+} \ell^{-} + X$ (e.g., at CERN).

3. Proton Spin Crisis

Genova 2012
Proton Spin

- COMPASS@CERN: Gluon contribution is small (sign undetermined)
- Unquenched quark model

Ageev et al., PLB 633, 25 (2006) Platchkov, NPA 790, 58 (2007)

		CQM	Unque	QM	
			Valence	Sea	Total
p	ΔΣ	1	0.378	0.298	0.676
	$2\Delta L$	0	0.000	0.324	0.324
	$2\Delta J$	1	0.378	0.622	1.000

- More than half of the proton spin from the sea!
- Orbital angular momentum

Suggested by Myhrer & Thomas, 2008, but not explicitly calculated

4. Strangeness in the Proton

- The strange (anti)quarks come uniquely from the sea: there is no contamination from up or down valence quarks
- The strangeness distribution is a very sensitive probe of the nucleon's properties
- Flavor content of form factors
- New data from Parity Violating Electron Scattering experiments: SAMPLE, HAPPEX, PVA4 and GO Collaborations

"There is no excellent beauty that hath not some strangeness in the proportion" (Francis Bacon, 1561-1626)

Quark Form Factors

- Charge symmetry $G^{u,p} = G^{d,n} \equiv G^{u}$ $G^{d,p} = G^{u,n} \equiv G^{d}$ $G^{s,p} = G^{s,n} \equiv G^{s}$
- Quark form factors

$$G^{u} = \left(3 - 4\sin^{2}\Theta_{W}\right)G^{\gamma,p} - G^{Z,p}$$

$$G^{d} = \left(2 - 4\sin^{2}\Theta_{W}\right)G^{\gamma,p} + G^{\gamma,n} - G^{Z,p}$$

$$G^{s} = \left(1 - 4\sin^{2}\Theta_{W}\right)G^{\gamma,p} - G^{\gamma,n} - G^{Z,p}$$

Kaplan & Manohar, NPB 310, 527 (1988) Musolf et al, Phys. Rep. 239, 1 (1994)

Static Properties

Strange Magnetic Moment

$$\vec{\mu}_{s} = \sum_{i} \mu_{i,s} \left[2\vec{s}(q_{i}) + \vec{\ell}(q_{i}) - 2\vec{s}(\bar{q}_{i}) - \vec{\ell}(\bar{q}_{i}) \right]$$

Jacopo Ferretti, Ph.D. Thesis, 2011 Bijker, Ferretti, Santopinto, Phys. Rev. C **85, 035204 (2012)**

Strange Radius

$$R_s^2 = \sum_{i=1}^5 e_{i,s} \left(\vec{r}_i - \vec{R}_{CM} \right)^2$$

Jacopo Ferretti, Ph.D. Thesis, 2011 Bijker, Ferretti, Santopinto, Phys. Rev. C **85, 035204 (2012)**

Strange Proton

- Strange radius and magnetic moment of the proton
- Theory
- Lattice QCD
- Global analysis PVES
- Unquenched QM

 $\mu_s = -6 \cdot 10^{-4} \, (\mu_N) \ \langle r^2 \rangle_s = -4 \cdot 10^{-3} \, (\text{fm}^2)$

Jacopo Ferretti, Ph.D. Thesis, 2011 Bijker, Ferretti, Santopinto, Phys. Rev. C **85**, 035204 (2012)

Unquenching the quark model for the MESONS & Why Unquenching? Santopinto, Galatà, Ferretti,Vassallo

UQM: Meson Self Energies & couple channels

• Hamiltonian:

$$H = H_0 + V$$

- H₀ act only in the bare meson space and it is chosen the Godfray and Isgur model
- V couples |A> to the continuum |BC>
- Dispersive equation

$$\Sigma(E_a) = \sum_{BC} \int_0^\infty q^2 dq \; \frac{|V_{a,bc}(q)|^2}{E_a - E_{bc}}$$

- from non-relativistic Schrödinger equation
- Bare energy E_a (H₀ eigenvalue) satisfies:

$$M_a = E_a + \Sigma(E_a)$$

- M_a = physical mass of meson A
- $\Sigma(E_a)$ = self energy of meson A

UQM: Meson Self Energies -- UQM I

• Coupling $V_{a,bc}(q)$ in $\Sigma(E_a)$ calculated as:

 $V_{a,bc}(q) = \sum_{\ell J} \left\langle BC\vec{q}\,\ell J \right| T^{\dagger} \left| A \right\rangle$

Sum over a complete set of accesibl ${}^{SU}f^{(5)\otimes SU}spin^{(2)}$

ground state (1S) mesons

Coupling calculated in the ³P₀ model

• Two possible diagrams contribute:

• Self energy in the UQM:

$$\Sigma(E_a) = \sum_{BC\ell J} \int_0^\infty q^2 dq \; \frac{\left| \langle BC\vec{q}\,\ell J | \,T^\dagger \, |A\rangle \right|^2}{E_a - E_b - E_c}$$

Godrey and Isgur model as bare mass

- Bare energies E_a calculated in the relativized G.I.Model for mesons
- Hamiltonian:

$$H = \sqrt{q^2 + m_1^2} + \sqrt{q^2 + m_2^2} + V_{\rm conf} + V_{\rm hyp} + V_{\rm so}$$

Confining potential:

$$V_{\text{conf}} = -\left(\frac{3}{4}c + \frac{3}{4}br - \frac{\alpha_s(r)}{r}\right)\vec{F_1}\cdot\vec{F_2}$$

• Hyperfine interaction:

$$V_{\text{hyp}} = -\frac{\alpha_s(r)}{m_1 m_2} \left[\frac{8\pi}{3} \vec{S}_1 \cdot \vec{S}_2 \ \delta^3(\vec{r}) + \frac{1}{r^3} \left(\frac{3 \ \vec{S}_1 \cdot \vec{r} \ \vec{S}_2 \cdot \vec{r}}{r^2} - \vec{S}_1 \cdot \vec{S}_2 \right) \right] \vec{F}_i \cdot \vec{F}_j$$

• Spin-orb. :

$$V_{\text{so,cm}} = -\frac{\alpha_s(r)}{r^3} \left(\frac{1}{m_i} + \frac{1}{m_j}\right) \\ \left(\frac{\vec{S}_i}{m_i} + \frac{\vec{S}_j}{m_j}\right) \cdot \vec{L} \quad \vec{F}_i \cdot \vec{F}_j$$

$$V_{\rm so,tp} = -\frac{1}{2r} \frac{\partial H_{ij}^{conf}}{\partial r} \left(\frac{\vec{S}_i}{m_i^2} + \frac{\vec{S}_j}{m_j^2} \right) \cdot \vec{L}$$

UQM or couple channel Quark Model

Parameters of the relativized QM fitted to

$$M_a = E_a + \Sigma(E_a)$$

- Recursive fitting procedure
- M_a = calculated physical masses of q bar-q mesons → reproduce experimental spectrum [PDG]

Intrinsic error of QM/UQM calculations: 30-50 MeV

UQM: charmonium with self-energy corr.

• Parameters of the UQM (³P₀ vertices)

Parameter	Value
$\gamma_0 \ lpha \ r_q \ m_n \ m_s \ m_c$	0.510 0.500 GeV 0.335 fm 0.330 GeV 0.550 GeV 1.50 GeV

• fitted to:

State	DD	DD^*	D^*D^*	$D_s D_s$	$D_s D_s^*$	$D_s^* D_s^*$	Total	Exp.
$\eta_c(3^1S_0)$	_	38.8	52.3	_	_	_	91.1	_
$\Psi(4040)(3^3S_1)$	0.2	37.2	39.6	3.3	_	_	80.3	80 ± 10
$h_c(2^1P_1)$	_	64.6	_	_	_	_	64.6	
$\chi_{c0}(2^3P_0)$	97.7	_	_	_	_	_	97.7	
$\chi_{c2}(2^3P_2)$	27.2	9.8	_	_	_	_	37.0	_
$\Psi(3770)(1^3D_1)$	27.7	_	_	_	_	_	27.7	27.2 ± 1.0
$c\bar{c}(1^{3}D_{3})$	1.7	_	_	_	_	_	1.7	
$c\bar{c}(2^{1}D_{2})$	_	62.7	46.4	_	8.8	_	117.9	_
$\Psi(4160)(2^{3}D_{1})$	11.2	0.4	39.4	2.1	5.6	_	58.7	103 ± 8
$c\bar{c}(2^{3}D_{2})$	_	43.5	49.3	_	11.3	_	104.1	_
$c\bar{c}(2^3D_3)$	17.2	58.3	48.1	3.6	2.6	_	129.8	_

UQM: charmonium spectrum with self-energy corr. Ferretti, Galata' and Santopinto, Phys. Rev. C 88, 015207 (2013)

State	J^{PC}	DD	$\overline{D}D^*$ $D\overline{D}^*$	\bar{D}^*D^*	$D_s \bar{D}_s$	$D_s \bar{D}_s^*$ $\bar{D}_s D_s^*$	$D_s^* \bar{D}_s^*$	$\eta_c \eta_c$	$\eta_c J/\Psi$	$J/\Psi J/\Psi$	$\Sigma(E_a)$	E_a	M_a	M _{exp} .					
$\begin{array}{c} \eta_c(1^1S_0) \\ J/\Psi(1^3S_1) \\ \eta_c(2^1S_0) \\ \Psi(2^3S_1) \\ h_c(1^1P_1) \\ \chi_{c0}(1^3P_0) \\ \chi_{c1}(1^3P_1) \\ \chi_{c2}(1^3P_2) \\ h_c(2^1P_1) \\ \chi_{c0}(2^3P_0) \\ \chi_{c1}(2^3P_1) \\ \chi_{c2}(2^3P_2) \\ c\bar{c}(1^1D_0) \end{array}$	$0^{-+} \\ 1^{} \\ 0^{-+} \\ 1^{} \\ 1^{+-} \\ 0^{++} \\ 1^{++} \\ 2^{++} \\ 1^{+-} \\ 0^{++} \\ 1^{++} \\ 2^{++} \\ 2^{-+} \\ 2^{-+} \\ 0^{++} \\ 2^{-+} \\ 0^{++} \\ 2^{-+} \\ 0^{++} \\ 2^{-+} \\ 0^{++} \\ 2^{-+} \\ 0^{++} \\ 2^{-+} \\ 0^{++} \\ 0$		-34 -27 -52 -42 -59 - - - - - - - - - - - - - - - - - -	-31 -41 -54 -48 -72 -53 -57 -76 -86 -66 -54 -62		-8 -6 -9 -7 -11 - - 9 -8 -12 - -11 -8 12	-8 -10 -8 -10 -15 -11 -10 -8 -13 -9 -10		2 1 1 2 1 1 	-2 -1 -3 -2 -2 -1 -1 -1	-83 -96 -111 -134 -130 -125 -129 -137 -152 -124 -117 -121	3062 3233 3699 3774 3631 3555 3623 3664 4029 3987 4025 4053	2979 3137 3588 3640 3501 3430 3494 3527 3877 3863 3908 3932	2980 3097 3637 3686 3525 3415 3511 3556 - 3872 3927					
$\mathbb{M} \begin{bmatrix} c\bar{c}(1^{T}D_{2}) \\ \Psi(3770)(1^{3}D_{1}) \\ c\bar{c}(1^{3}D_{2}) \\ c\bar{c}(1^{3}D_{3}) \end{bmatrix}$	2-+ 1 2 3	-11 -25	-99 -40 -106 -49	-62 -84 -61 -88	4 4	-12 -2 -11 -8	-10 -16 -11 -10		(Ge 4 3 2 2	M .0 .5 .5 .0 .5	_ =	-	_	_X(<u>872)</u>				
									1	.)() , + 1		1+-	0++	1++ 2++	2-+	2	3	IPC

UQM: charmonium with self-energy corr.

Ferretti, Galata' and Santopinto, Phys. Rev. C 88

- Experimental mass: 3871.68 ± 0.17 MeV [PDG]
- Several predictions for X(3872)'s mass. Here: c bar-c + continuum effects

$\chi_{c1}(2^3P_1)$'s ma	Referenc			
3908		This paper		
4007.5		201		
3990	[1]			
3920.5				
3896	[3]			

- . [1] Ferretti, Galata' and Santopinto, Phys. Rev. C 88, 015207 (2013);
- . [2] Eichten et al., Phys. Rev. D 69,(2004)
- . [3] Kalashnikova, Phys. Rev. D 72, 034010 (2005)
- [4] Eichten et al., Phys. Rev. D 73, 014014 (2008)
- [5] Pennington and Wilson, Phys. Rev. D 76, 077502 (2007)

Interpretation of the X(3872) as a charmonium state plus an extra component due to the coupling to the meson-meson continuum Ferretti, Galatà, Santopinto, Phys.Rev. C88 (2013) 1, 015207

- UCQM results used to study the problem of the X(3872) mass, meson with $J^{PC} = 1^{++}$, $2^{3}P_{1}$ quantum numbers
- Experimental mass: 3871.68 ± 0.17 MeV [PDG]
- X(3872) very close to D bar-D* decay threshold
- Possible importance of continuum coupling effects?
- Several interpretations: pure c bar-c

D bar-D* molecule

tetraquark

c bar-c + continuum effects

nessary to study strong and radiative decays to uderstand the situation

Radiative decays

Ferretti, Galatà, Santopinto, Phys. Rev. D90 (2014) 5, 054010

Transition	E_{γ} [MeV]	$\Gamma_{c\bar{c}}$ [KeV] present paper	$\begin{array}{c} \Gamma_{D\bar{D}^*} \ [\text{KeV}] \\ \text{Ref.} \ [7] \end{array}$	$ \begin{array}{c} \Gamma_{D\bar{D}^*} \ [\text{KeV}] \\ \text{Ref.} \ [9] \end{array} $	$ \begin{array}{c} \Gamma_{D\bar{D}^*} \ [\text{KeV}] \\ \text{Ref.} \ [59] \end{array} $	$\begin{array}{c} \Gamma_{c\bar{c}+D\bar{D}^{*}} \ [\text{KeV}] \\ \text{Ref.} \ [60] \end{array}$	$\begin{array}{c} \Gamma_{exp.} \ [\text{KeV}] \\ \text{PDG} \ [43] \end{array}$
$X(3872) \rightarrow J/\Psi\gamma$ $X(3872) \rightarrow \Psi(2S)\gamma$ $X(3872) \rightarrow \Psi(3770)\gamma$ $X(3872) \rightarrow \Psi_2(1^3D_2)\gamma$	697 181 101 34	11 70 4.0 0.35	8 0.03 0 0	64 - 190	125 - 251	$2 - 17 \\ 7 - 59$	$pprox 7 \ pprox 36$

[7] Swanson: molecular interpretation[9] Oset: moleacular interpretation[59]-[60] Faessler : molecular ; ccbar +molecular

The Molecular model does not predict radiative decays into $\Psi(3770)$ and $\Psi_2(1^3D_2) \rightarrow Possible way to distinguish between the two interpretations$

Quasi two-body decay $X(3872) \rightarrow D^0(\bar{D}^0\pi^0)_{\bar{D}^{0*}}$

Ferretti, Galatà, Santopinto, Phys. Rev. D90 (2014) 5, 054010

$$\Gamma_{\bar{D}^{0*}} < 2.1 \text{ MeV}$$
 $\Gamma_{\bar{D}^{0*}} = 0.1 \text{ MeV}$

 $\Gamma_{X(3872)\to D(\bar{D}\pi)_{\bar{D}^*}} = 0.50 - 0.62 \text{ MeV}$, $M_{X(3872)} = 3871.85 \text{ MeV}$

$$\Gamma_{X(3872)\to D(\bar{D}\pi)_{\bar{D}^*}} = 0.54 - 0.75 \text{ MeV}, \quad M_{X(3872)} = 3871.95 \text{ MeV}$$

Experimental results:

PDG Aushev et al. [Belle Coll.], Phys. Rev. D 81, 031103 (2010)

$$\Gamma_{X(3872)\to D^0D^{0*}} = 3.0^{+1.9}_{-1.4} \pm 0.9 \text{ MeV}$$

 $\Gamma_{X(3872)\to D^0\bar{D}^{0*}} = 3.9^{+2.8+0.2}_{-1.4-1.1} \text{ MeV}$

PDG Aubert et al. [BABAR Coll.], Phys. Rev. D 77011102(2008)

- Prompt production from CDF collaboration in highenergy hadron collisions incompatible with a molecular interpretation
- meson-meson molecule: large (a few fm) and fragile
- See: Bignamini et al., Phys. Rev. Lett. 103, 162001 (2009); Bauer, Int. J. Mod. Phys. A 20, 3765 (2005)

Bottomonium spectrum (in a couple channel calculations) Ferretti, Santopintio, Phys.Rev. D90, 094022 (2014)

• Parameters of the UQM (³P₀ vertices)

Parameter	Value
$\begin{array}{c} \gamma_0 \\ \alpha \\ r_q \\ m_n \\ m_s \\ m_c \\ m_b \end{array}$	0.732 0.500 GeV 0.335 fm 0.330 GeV 0.550 GeV 1.50 GeV 4.70 GeV

• Pair-creation strength γ_0 fitted to:

•

۲

$$\begin{split} \Gamma_{\Upsilon(4S)\to B\bar{B}} &= 2\Phi_{A\to BC} \left| \langle BC\vec{q_0} \,\ell J | \, T^{\dagger} \, |A \rangle \right|^2 \\ &= 2\Phi_{\Upsilon(4S)\to B\bar{B}} \\ & \left| \langle B\bar{B}\vec{q_0} \, 11 | \, T^{\dagger} \, |\Upsilon(4S) \rangle \right|^2 \\ &= 21 \text{ MeV} , \end{split}$$

Bottomonium Strong Decays

Ferretti, Santopinto, Phys.Rev. D90 094022 (2014)

• Two-body strong decays. Results:

State	Mass [MeV]	J^{PC}	ΒB	$B\bar{B}^*$ $\bar{B}B^*$	$B^*\bar{B}^*$	$B_s B_s$	$B_s B_s^* \\ \bar{B}_s B_s^*$	$B_s^* B_s^*$
$\Upsilon(4^3S_1)$	10.595	1	21	_	_	_	_	_
< - /	$10579.4 \pm 1.2^{\dagger}$							
$\chi_{b2}(2^3F_2)$	10585	2^{++}	34	_	_	_	_	_
$\Upsilon(3^3D_1)$	10661	$1^{}$	23	4	15	_	_	_
$\Upsilon_2(3^3D_2)$	10667	$2^{}$	_	37	30	_	_	_
$\Upsilon_2(3^1D_2)$	10668	2^{-+}	_	55	57	_	_	_
$\Upsilon_{3}(3^{3}D_{3})$	10673	$3^{}$	15	56	113	_	_	_
$\chi_{b0}(4^3P_0)$	10726	0^{++}	26	_	24	_	_	_
$\Upsilon_3(2^3G_3)$	10727	$3^{}$	3	43	39	_	_	_
$\chi_{b1}(4^3P_1)$	10740	1^{++}	_	20	1	_	_	_
$h_b(4^1P_1)$	10744	1^{+-}	_	33	5	_	_	_
$\chi_{b2}(4^{3}P_{2})$	10751	2^{++}	10	28	5	1	_	_
$\chi_{b2}(3^3F_2)$	10800	2^{++}	5	26	53	2	2	_
$\Upsilon_3(3^1F_3)$	10803	3^{+-}	_	28	46	_	3	_
$\Upsilon(10860)$	$10876 \pm 11^{\dagger}$	$1^{}$	1	21	45	0	3	1
$\Upsilon_2(4^3D_2)$	10876	$2^{}$	_	28	36	_	4	4
$\Upsilon_2(4^1D_2)$	10877	2^{-+}	_	22	37	_	4	3
$\Upsilon_3(4^3D_3)$	10881	$3^{}$	1	4	49	0	1	2
$\Upsilon_3(3^3G_3)$	10926	$3^{}$	$\overline{7}$	0	13	2	0	5
$\Upsilon(11020)$	$11019 \pm 8^{\dagger}$	$1^{}$	0	8	26	0	0	2

Bottomonium spectrum (in couple channel calculations)

Ferretti, Santopintio, Phys.Rev. D90, 094022 (2014)

State	J^{PC}	BB	BB^*	B^*B^*	$B_s B_s$	$B_s B_s^*$	$B_s^* B_s^*$	$B_c B_c$	$B_c B_c^*$	$B_c^* B_c^*$	$\eta_b \eta_b$	$\eta_b \Upsilon$	ΥΥ	$\Sigma(E_a)$	E_a	M_a	$M_{exp.}$
			$\bar{B}B^*$			$\bar{B}_s B_s^*$			$\bar{B}_c B_c^*$								-
(11σ)	0-+		20	0.0		-	-		1	-			0		0.455	0001	0001
$\eta_b(1^2S_0)$	0 '	_	-26	-26	_	-5	-5	_	-1	-1	_	_	0	-64	9455	9391	9391
$T(1^{3}S_{1})$	1	-5	-19	-32	-1	-4	-7	0	0	-1	_	0	_	-69	9558	9489	9460
$\eta_b(2^{_1}S_0)$	0^{-+}	_	-43	-41	_	-8	-7	_	-1	-1	_	_	0	-101	10081	9980	9999
$\Upsilon(2^3S_1)$	$1^{}$	-8	-31	-51	-2	-6	-9	0	0	-1	_	0	_	-108	10130	10022	10023
$\eta_b(3^1S_0)$	0^{-+}	_	-59	-52	_	-8	-8	_	-1	-1	_	_	0	-129	10467	10338	_
$\Upsilon(3^3S_1)$	$1^{}$	-14	-45	-68	-2	-6	-10	0	0	-1	_	0	_	-146	10504	10358	10355
$h_b(1^1P_1)$	1^{+-}	_	-49	-47	_	-9	-8	_	-1	-1	_	0	_	-115	10000	9885	9899
$\chi_{b0}(1^3P_0)$	0^{++}	-22	_	-69	-3	_	-13	0	_	-1	0	_	0	-108	9957	9849	9859
$\chi_{b1}(1^3P_1)$	1^{++}	_	-46	-49	_	-8	-9	_	-1	-1	_	_	0	-114	9993	9879	9893
$\chi_{b2}(1^3P_2)$	2^{++}	-11	-32	-55	-2	-6	-9	0	-1	-1	0	_	0	-117	10017	9900	9912
$h_b(2^1P_1)$	1^{+-}	_	-66	-59	_	-10	-9	_	-1	-1	_	0	_	-146	10393	10247	10260
$\chi_{b0}(2^3P_0)$	0^{++}	-33	_	-85	-4	_	-14	0	_	-1	0	_	0	-137	10363	10226	10233
$\chi_{b1}(2^3P_1)$	1^{++}	_	-63	-60	_	-9	-10	_	-1	-1	_	_	0	-144	10388	10244	10255
$\chi_{b2}(2^{3}P_{2})$	2^{++}	-16	-42	-72	-2	-6	-10	0	0	-1	0	_	0	-149	10406	10257	10269
$h_b(3^1P_1)$	1^{+-}	_	-18	-73	_	-11	-10	_	-1	-1	_	0	_	-114	10705	10591	_
$\chi_{b0}(3^3 P_0)$	0^{++}	-4	_	-160	-6	_	-15	0	_	-1	0	_	0	-186	10681	10495	_
$\chi_{b1}(3^3P_1)$	1^{++}	_	-25	-74	_	-11	-10	_	0	-1	_	_	0	-121	10701	10580	_
$\chi_{b2}(3^3P_2)$	2^{++}	-19	-16	-79	-3	-8	-12	0	0	-1	0	_	0	-138	10716	10578	_
$\Upsilon_2(1^1D_2)$	2^{-+}	_	-72	-66	_	-11	-10	_	-1	-1	_	_	0	-161	10283	10122	_
$\Upsilon(1^3D_1)$	$1^{}$	-24	-22	-90	-3	-3	-16	0	0	-1	_	0	_	-159	10271	10112	_
$\Upsilon_2(1^3 D_2)$	$2^{}$	_	-70	-68	_	-10	-11	_	-1	-1	_	0	_	-161	10282	10121	10164
$\Upsilon_3(1^3D_3)$	$3^{}$	-18	-43	-78	-3	-8	-11	0	-1	-1	_	0	_	-163	10290	10127	_

Bottomonium

Ferretti, Santopintio, Phys.Rev. D90 (2014) 9, 094022

Couple Channels corrections to Bottomonium , the $\chi_b(3P)$ system Ferretti, Santopintio, Phys.Rev. D90 (2014) 9, 094022

- Results used to study some properties of the $\chi_b(3\text{P})$ system, meson multiplet with N=3, L=1 quantum numbers
- $\chi_b(3P)$ states close to first open bottom decay thresholds
- Possible importance of continuum coupling effects?
- Pure c bar-c and c bar-c + continuum effects interpretations
- Necessary to study decays (strong, e.m., hadronic, ...) to confirm one interpretation

Couple Channels corrections to Bottomonium , the $\chi_b(3P)$ system Ferretti, Santopintio, Phys.Rev. D90 (2014) 9, 094022

- Some experimental results for the mass barycenter of the system:
- $M[\chi_b(3P)] = 10.530 \pm 0.005 \text{ (stat.)} \pm 0.009 \text{ (syst.)} \text{ GeV}$
- Aad et al. [ATLAS Coll.], Phys. Rev. Lett. **108**, 152001 (2012)
- $M[\chi_b(3P)] = 10.551 \pm 0.014 \text{ (stat.)} \pm 0.017 \text{ (syst.)} \text{ GeV}$
- Abazov et al. [D0 Coll.], Phys. Rev. D 86, 031103 (2012)
- Mass barycenter in the UQM:

Main points

- Unquenching quark model:we have constructed the formalism in an explicit way, also thanks to group theory tecniques. Now, it can be applied to any quark model.
- We think we have maked up the problems of quark models adding the coupling with the continuum, thus opening the possibility of many, many applications

• Future: application to open problems in hadron structure and spectroscopy : helicity amplitudes, strong decays, and so on.