

Dmitrij Siemens

Combined analysis of $\pi N \rightarrow \pi N$ and $\pi N \rightarrow \pi \pi N$ in chiral effective field theory at one-loop level

- Formal Aspects
- Combined Fit
- Predictions

Motivation and Methodology

Why?

Aim Theoretical description of $\pi N \rightarrow \pi N$ and $\pi N \rightarrow \pi \pi N$ above threshold

Problem I QCD is non-perturbative for low energies

Solution I Effective Field Theory ⇒ Chiral Perturbation Theory

Problem II Resonances play an important role

Solution II Inclusion of the most dominant resonance $\Delta(1232)$

as an explicit degree of freedom

- 1. Pick Lagrangian
- 2. Derive Feynman rules
- 3. Draw all graphs up to specified order
- 4. Calculate amplitudes in specified decomposition
- Calculate T-matrix and matrix element squared
- 6. Calculate observables like cross sections and phase shifts

2 Chiral Approaches

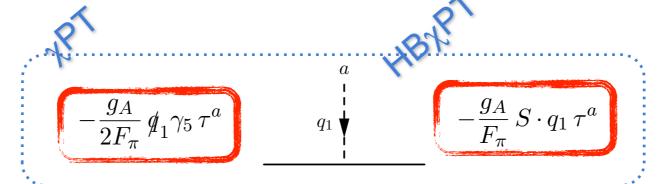
χΡΤ

- EFT of Standard Model
- Relies upon chiral symmetry of QCD
- DOF are mesons and baryons instead of quarks
- ullet Breakdown scale of theory: $\Lambda_\chi \, pprox \, 1 \; {
 m GeV}$

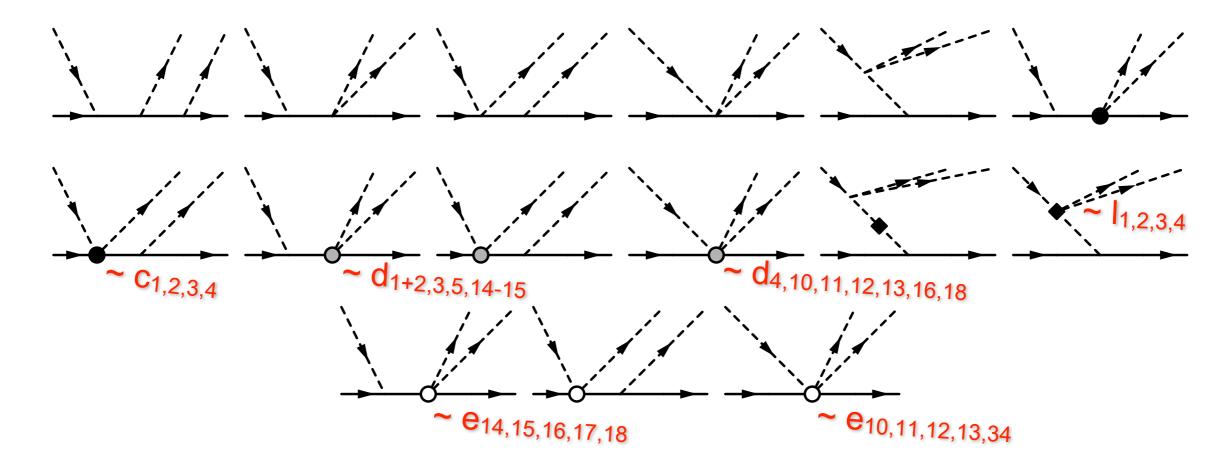
ΗΒχΡΤ

- Non-relativistic limit of χPT
- Inclusion of $1/m_N$ expansion into power counting
- Original motivation: Allows calculations beyond tree level

Formal Aspects


χΡΤ & ΗΒχΡΤ

Effective Lagrangian

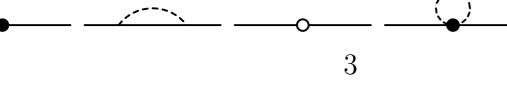

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\pi\pi}^{(2)} + \mathcal{L}_{\pi\pi}^{(4)} + \mathcal{L}_{\pi N}^{(1)} + \mathcal{L}_{\pi N}^{(2)} + \mathcal{L}_{\pi N}^{(3)} + \mathcal{L}_{\pi N}^{(4)}$$

$$Q = \left\{ \frac{q}{\Lambda_{\chi}}, \frac{M_{\pi}}{\Lambda_{\chi}} \right\}$$

Tree Graphs

Renormalization I

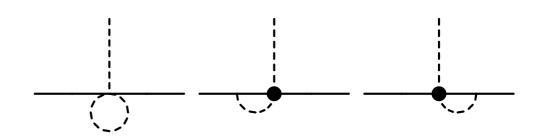
Meson Sector

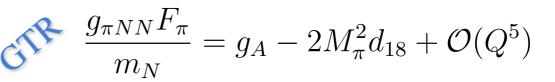

$$M^2 = M_{\pi}^2 + \delta M^{(4)}$$

$$Z_{\pi} = 1 + \delta Z_{\pi}^{(4)}$$

$$F = F_{\pi} + \mathfrak{p} \mathcal{F}_{\pi}^{(4)}$$
7: Axial coupling.

3

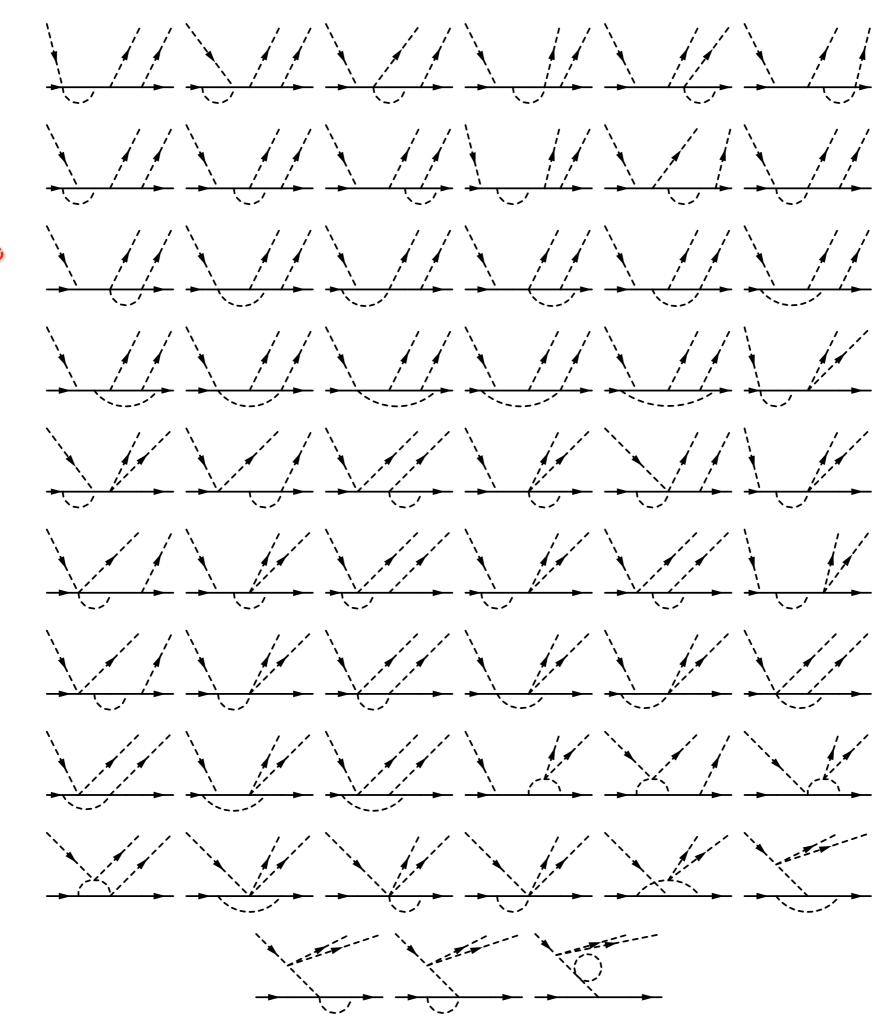

Nucleon Self Energy


$$m = m_N + \delta m^{(2)} + \delta m^{(3)} + \delta m^{(4)}$$

$$Z_N = 1 + \delta Z_N^{(3)} + \delta Z_N^{(4)}$$

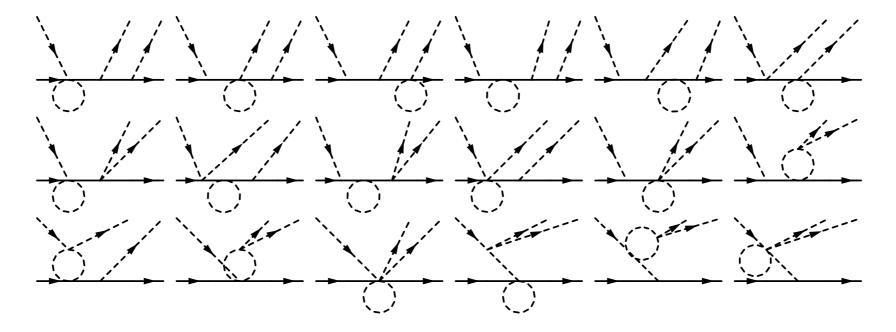
Axial-coupling constant

$$g = g_A + \delta g^{(3)} + \delta g^{(4)}$$

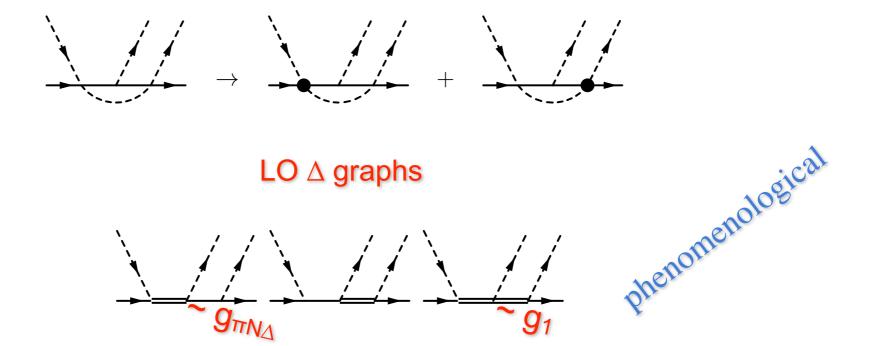

Linear Combinations

$$c_1 \to c_1 + 2M_\pi^2(e_{22} - 4e_{38})$$

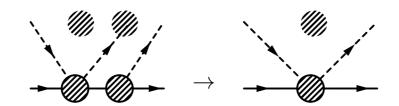
$$c_2 \to c_2 - 8M_\pi^2(e_{20} + e_{35})$$


$$c_3 \to c_3 - 4M_{\pi}^2(2e_{19} - e_{22} - e_{36})$$

$$c_4 \to c_4 - 4M_\pi^2 (2e_{21} - e_{37})$$



Loop Graphs
Self-Energy type


Loop graphs - Tadpole type

Transition from LO loops to NLO loops

Transition from $\pi N \rightarrow \pi\pi N$ graphs to $\pi N \rightarrow \pi N$ graphs

Renormalization II

Meson Sector

$$l_i = \frac{\beta_{l_i}}{32\pi^2} \bar{l}_i + \beta_{l_i} \left(\bar{\lambda} + \frac{1}{32\pi^2} \log \left(\frac{M_\pi^2}{\mu^2} \right) \right)$$

$$\bar{\lambda} = \frac{1}{16\pi^2} \left(\frac{1}{d-4} + \frac{1}{2} (\gamma_E - 1 - \ln 4\pi) \right)$$

HB approach

$$d_i = \bar{d}_i + \frac{\beta_{d_i}}{F_\pi^2} \left(\bar{\lambda} + \frac{1}{32\pi^2} \log \left(\frac{M_\pi^2}{\mu^2} \right) \right)$$
$$e_i = \bar{e}_i + \frac{\beta_{e_i}}{F_\pi^2} \left(\bar{\lambda} + \frac{1}{32\pi^2} \log \left(\frac{M_\pi^2}{\mu^2} \right) \right)$$

Covariant "Modified" EOMS

$$c_i = \bar{c}_i + \delta c_i^{(3)} + \delta c_i^{(4)}$$

$$d_i = \bar{d}_i + \delta d_i^{(3)} + \delta d_i^{(4)}$$

$$e_i = \bar{e}_i + \delta e_i^{(4)}$$

$$x \in \{c, d, e\}$$

$$\delta x_i^{(n)} = \bar{x}_{i,f}^{(n)} + \frac{\beta_{x_i,B}^{(n)}}{F_\pi^2} \left(\bar{\lambda} + \frac{1}{32\pi^2} \log\left(\frac{m_N^2}{\mu^2}\right) \right) + \frac{\beta_{x_i,M}^{(n)}}{F_\pi^2} \left(\bar{\lambda} + \frac{1}{32\pi^2} \log\left(\frac{M_\pi^2}{\mu^2}\right) \right)$$

Combined Fit

Phase Shifts - $\pi N \rightarrow \pi N$

$$T^{ba} = \chi_{N'}^{\dagger} \left(\delta^{ab} T^{+} + i \epsilon^{bac} \tau_{c} T^{-} \right) \chi_{N}$$

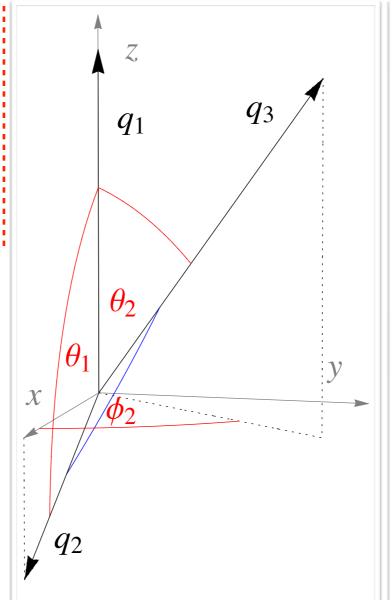
$$X \in \{A, B\}$$

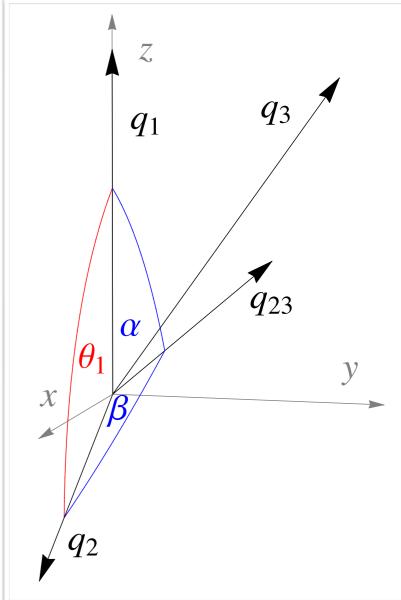
$HB\chi PT$

$$T^{\pm} = \bar{u}_v^{(s')} \left(g^{\pm} + 2i S \cdot q \times q' h^{\pm} \right) u_v^{(s)}$$
$$f_{l\pm}^I(s) = \frac{E + m_N}{16\pi\sqrt{s}} \int_{-1}^1 dz \, \left(g^I P_l(z) + \mathbf{q}^2 h^I (P_{l\pm}(z) - z P_l(z)) \right)$$

Isospin basis

$$X^{I=1/2} = X^{+} + 2X^{-}, \quad X^{I=3/2} = X^{+} - X^{-}$$

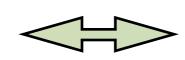

Unitarization prescription


$$\delta_{l\pm}^{I}(s) = \arctan(|\boldsymbol{q}|\Re f_{l\pm}^{I}(s))$$

Observables - $\pi N \rightarrow \pi \pi N$

Unpolarized Observables

- ullet $\sigma_{
 m tot}$
- $\frac{\mathrm{d}^2 \sigma}{\mathrm{d}\omega_2 \mathrm{d}\Omega_2}$, $\frac{\mathrm{d}^3 \sigma}{\mathrm{d}\omega_2 \mathrm{d}\Omega_2 \mathrm{d}\Omega_3}$ and W
- $\frac{\mathrm{d}\sigma}{dM_{\pi\pi}^2}$, $\frac{\mathrm{d}\sigma}{\mathrm{d}t}$, $\frac{\mathrm{d}\sigma}{\mathrm{d}t\,\mathrm{d}M_{\pi\pi}^2}$ and $\frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta}$


Observables - $\pi N \rightarrow \pi \pi N$

Unpolarized Observables

 $\sigma_{
m tot}$

•
$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d}\omega_2 \mathrm{d}\Omega_2}$$
, $\frac{\mathrm{d}^3 \sigma}{\mathrm{d}\omega_2 \mathrm{d}\Omega_2 \mathrm{d}\Omega_3}$ and W

•
$$\frac{\mathrm{d}\sigma}{dM_{\pi\pi}^2}$$
, $\frac{\mathrm{d}\sigma}{\mathrm{d}t}$, $\frac{\mathrm{d}\sigma}{\mathrm{d}t\,\mathrm{d}M_{\pi\pi}^2}$ and $\frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta}$

Unpolarized Matrix Element Squared:

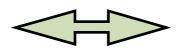
$$|\mathcal{M}|^2 = \frac{1}{2} \sum_{s,s'} T_{ss'}^{\dagger} T_{ss'}$$

$$T_{ss'}^{abc} = i \bar{u}^{(s')} \gamma_5 \left(F_1^{abc} + (\not q_2 + \not q_3) F_2^{abc} + (\not q_2 - \not q_3) F_3^{abc} + (\not q_2 \not q_3 - \not q_3 \not q_2) F_4^{abc} \right) u^{(s)}$$

$$| \mathbf{HB}\chi \mathbf{PT} | T_{ss'}^{abc} = \bar{u}_v^{(s')} \left(S \cdot q_1 \, A^{abc} + S \cdot q_2 \, B^{abc} + S \cdot q_3 \, C^{abc} + \mathrm{i} \epsilon_{\mu\nu\alpha\beta} \, q_1^\mu q_2^\nu q_3^\alpha v^\beta \, D^{abc} \right) u_v^{(s)}$$

$$X^{abc} = \chi_{N'}^{\dagger} \left(\tau^a \delta^{bc} X_1 + \tau^b \delta^{ac} X_2 + \tau^c \delta^{ab} X_3 + i \epsilon^{abc} X_4 \right) \chi_N$$

Physically Accessible Channels


I.
$$\pi^- p \to \pi^0 \pi^0 n$$

II.
$$\pi^- p \to \pi^+ \pi^- n$$

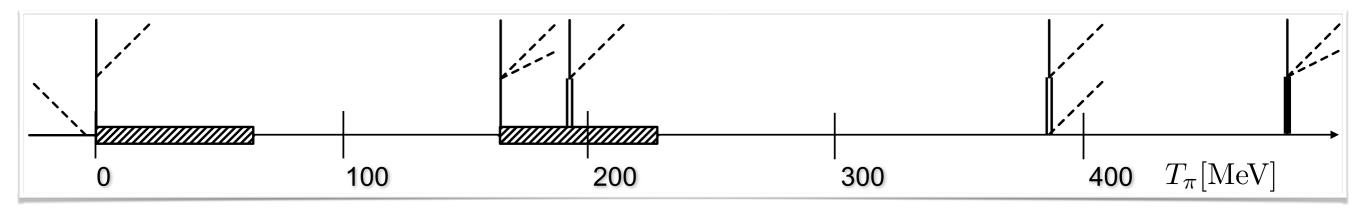
III.
$$\pi^+ p \to \pi^+ \pi^+ n$$

IV.
$$\pi^+ p \to \pi^+ \pi^0 p$$

$$V. \quad \pi^- p \to \pi^0 \pi^- p$$

T-matrix Reduction

I.
$$X = \sqrt{2}X_1$$


II.
$$X = \sqrt{2}(X_1 + X_2)$$

III.
$$X = \sqrt{2}(X_2 + X_3)$$

IV.
$$X = X_3 + X_4$$

$$V. X = X_2 + X_4$$

Fitting Procedure

Combined Fit

$$\chi^2 = \chi_{\pi N}^2 + \chi_{\pi \pi N}^2 + \chi_c^2$$

$$\chi_{\pi N}^2 = \sum_i \frac{(\delta_i^{exp} - \delta_i^{th})^2}{\Delta \delta_i^2}$$

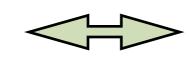
$$\Delta \delta_{S,P} = 5\%$$
 $\Delta \delta_D = 20\%$

$$\chi_{\pi N}^{2} = \sum_{i} \frac{(\delta_{i}^{exp} - \delta_{i}^{th})^{2}}{\Delta \delta_{i}^{2}} \qquad \chi_{\pi \pi N}^{2} = \sum_{i} \frac{(\sigma_{i}^{exp} - \sigma_{i}^{th})^{2}}{\Delta \sigma_{i}^{2}} \qquad \chi_{c}^{2} = \sum_{i} \frac{(x_{i} - \bar{x}_{i})^{2}}{R_{i}^{2}}$$

$$\Delta \sigma = \Delta \sigma^{exp}$$

$$\chi_c^2 = \sum_i \frac{(x_i - \bar{x}_i)^2}{R_i^2}$$

$$R_{d_i} = 3 \qquad R_{e_i} = 5$$


Naturalness Condition

$$|x_i| = \frac{|\tilde{x}_i|}{\Lambda^n} \sim \frac{Q^0}{\Lambda^n} < \frac{Q^{-1}}{\Lambda^n} = \frac{1}{q\Lambda^{n-1}}$$

$$\Lambda \sim m_{\rho} \sim 770 \; \mathrm{MeV}$$

$$\omega_{\pi N}^{CMS} < 190 \text{ MeV}$$

$$\omega_{\pi\pi N}^{CMS} < 280 \text{ MeV}$$

$$|c_i| \sim 1.0 < 3.0 < 5.5 \text{ GeV}^{-1}$$

$$|d_i| \sim 1.5 < 4.0 < 7.0 \text{ GeV}^{-2}$$

$$|e_i| \sim 2.0 < 5.5 < 9.0 \text{ GeV}^{-3}$$

Fits

Input

m_N	M_{π}	F_{π}	g_A	l_1	l_2	l_3	l_4	
938.27	139.57	92.4	1.27	-0.4 ± 0.6	4.3 ± 0.1	2.9 ± 2.4	4.4 ± 0.2	

			I.	IB			Cov						
LECs	KH				GW			KH			GW		
c_1	-1.27	±	0.08	-1.60	土	0.07	-1.12	土	0.08	-1.43	土	0.07	
c_2	3.55	\pm	0.12	3.35	\pm	0.11	3.49	\pm	0.11	3.38	\pm	0.10	
c_3	-6.28	\pm	0.08	-6.42	\pm	0.07	-5.94	\pm	0.08	-6.15	\pm	0.07	
c_4	3.59	\pm	0.04	3.64	\pm	0.04	3.35	\pm	0.04	3.44	\pm	0.04	
$d_1 + d_2$	3.65	\pm	0.15	3.32	\pm	0.13	3.05	\pm	0.12	2.98	\pm	0.11	
d_3	-4.18	\pm	0.29	-3.14	\pm	0.28	-2.47	\pm	0.18	-1.98	\pm	0.17	
d_4	-0.74	\pm	2.12	-0.89	\pm	2.11	4.41	\pm	1.70	4.40	\pm	1.70	
d_5	0.69	\pm	0.18	0.01	\pm	0.17	0.01	\pm	0.15	-0.49	\pm	0.14	
d_{10}	-1.09	\pm	1.83	-0.71	\pm	1.85	-1.86	\pm	1.91	-1.23	\pm	1.93	
d_{11}	-2.35	\pm	1.98	-2.01	\pm	1.99	-2.27	\pm	2.07	-2.02	\pm	2.07	
d_{12}	3.61	\pm	1.95	3.18	\pm	1.99	5.41	\pm	1.80	4.72	\pm	1.82	
d_{13}	1.55	\pm	2.05	1.42	\pm	2.05	-0.73	\pm	2.02	-0.75	\pm	2.02	
$d_{14} - d_{15}$	-6.88	\pm	0.27	-5.92	\pm	0.25	-5.02	\pm	0.21	-4.50	\pm	0.19	
d_{16}	2.73	<u>±</u>	0.76	2.42	<u>±</u>	0.76	1.86	±	0.72	1.74	<u>±</u>	0.73	
$\chi^2_{\pi N}$		171			132			242			98		
$\chi^2_{\pi\pi N}$		172			169			176			170		

$$|c_i| \sim 1.0 < 3.0 < 5.5$$

$$|c_i| \sim 1.0 < 3.0 < 5.5$$
 $|d_i| \sim 1.5 < 4.0 < 7.0$

Fits

Input

m_N	M_{π}	F_{π}	g_A	l_1	l_2	l_3	l_4	
938.27	139.57	92.4	1.27	-0.4 ± 0.6	4.3 ± 0.1	2.9 ± 2.4	4.4 ± 0.2	

$g_{\pi N\Delta}$	g_1	Me
1.35	2.29	100

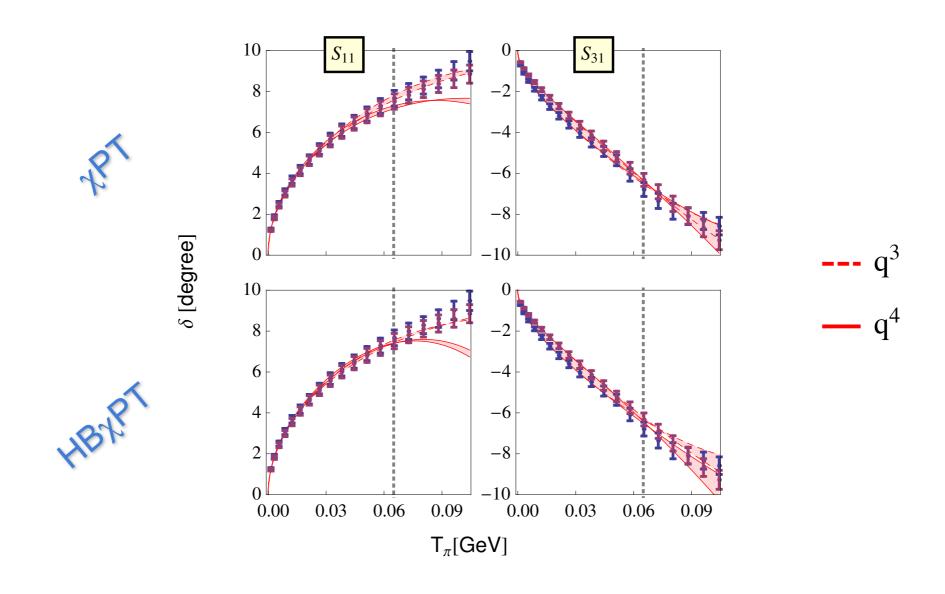
IDO	НВ							Cov						
LECs	KH				GW			KH			GW			
c_1	-1.29	±	0.08	-1.61	土	0.07	-0.93	±	0.08	-1.26	±	0.07		
c_2	1.50	\pm	0.12	1.34	\pm	0.11	1.44	\pm	0.11	1.39	\pm	0.10		
c_3	-2.52	\pm	0.08	-2.70	\pm	0.08	-2.34	\pm	0.08	-2.65	\pm	0.08		
c_4	1.83	\pm	0.04	1.90	\pm	0.04	1.62	\pm	0.04	1.74	\pm	0.04		
$d_1 + d_2$	0.57	\pm	0.15	0.32	\pm	0.14	0.42	\pm	0.13	0.46	\pm	0.12		
d_3	-1.66	\pm	0.29	-0.76	\pm	0.27	-1.16	\pm	0.18	-0.79	\pm	0.17		
d_4	-1.11	\pm	2.37	-1.13	\pm	2.37	0.04	\pm	2.21	0.24	\pm	2.12		
d_5	0.92	\pm	0.18	0.28	\pm	0.17	0.66	\pm	0.15	0.18	\pm	0.14		
d_{10}	-0.58	\pm	1.93	-0.31	\pm	1.93	0.29	\pm	2.09	0.62	\pm	2.08		
d_{11}	-3.10	\pm	2.00	-2.87	\pm	2.00	-0.20	\pm	2.06	-0.09	\pm	2.05		
d_{12}	1.06	\pm	2.05	0.72	\pm	2.06	0.66	\pm	1.95	0.44	\pm	1.94		
d_{13}	-2.49	\pm	2.05	-2.59	\pm	2.05	-2.53	\pm	1.99	-2.56	\pm	1.98		
$d_{14} - d_{15}$	-1.66	\pm	0.28	-0.81	\pm	0.26	-0.89	\pm	0.22	-0.59	\pm	0.20		
d_{16}	-0.51	<u>±</u>	0.70	-0.63	±	0.72	0.97	±	0.70	0.82	±	0.70		
$\chi^2_{\pi N}$		123			205			126			154			
$\chi^2_{\pi\pi N}$		180			178			189			186			

$$|c_i| \sim 1.0 < 3.0 < 5.5$$

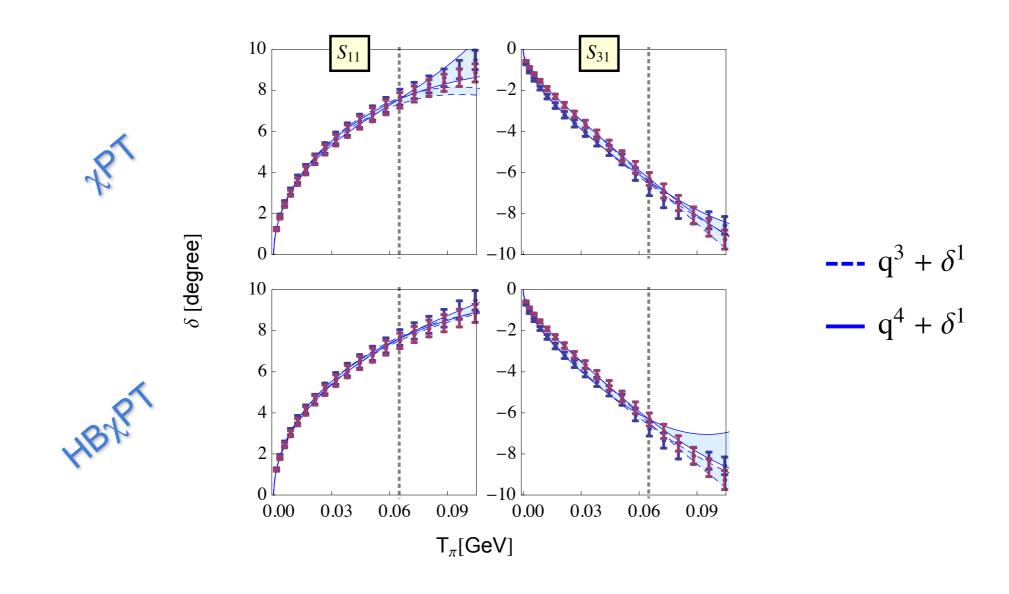
$$|d_i| \sim 1.5 < 4.0 < 7.0$$

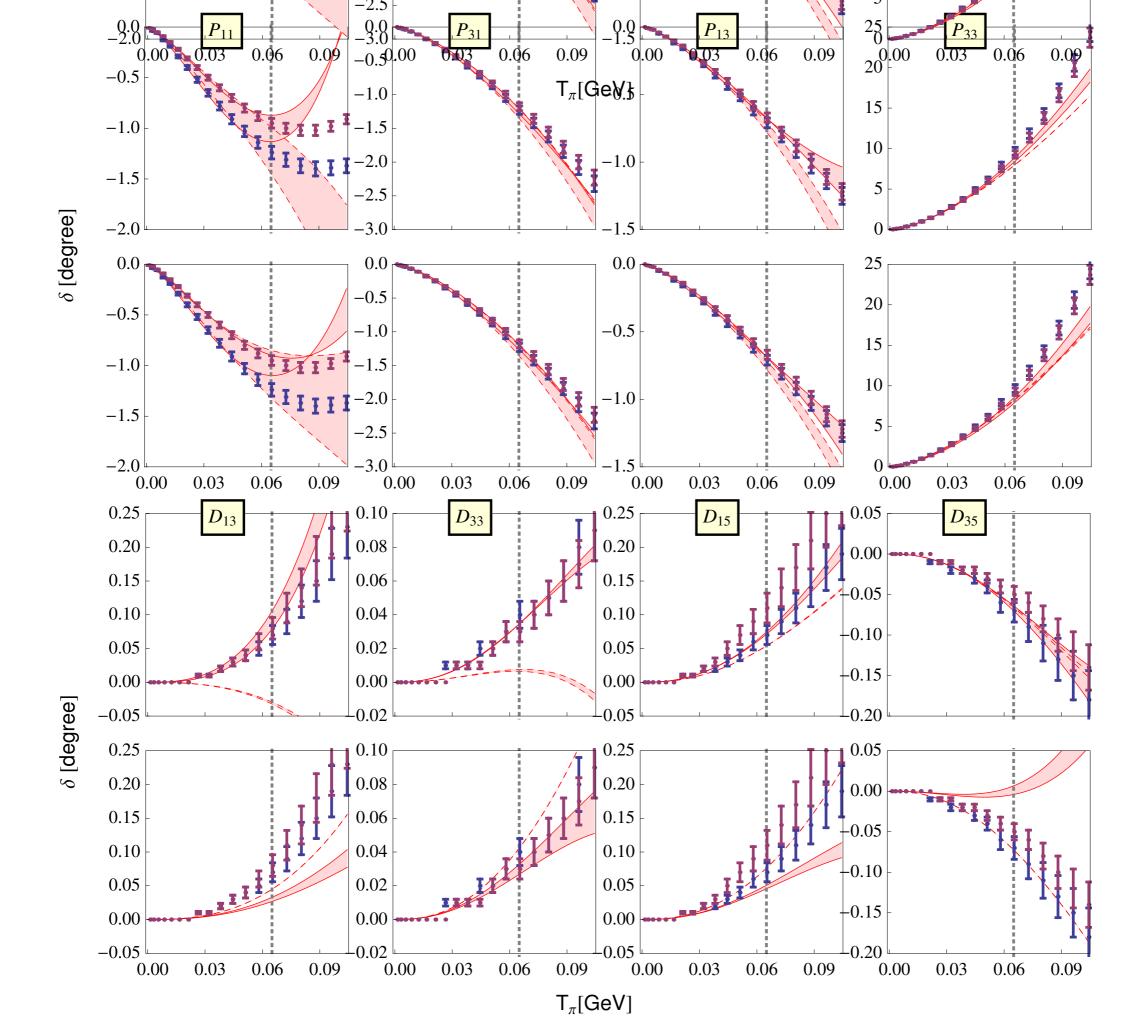
LEC			I.	łВ				Cov					
LECs		KH			GW			KH			GW		
c_1	-0.70	土	0.11	-0.89	±	0.11	-0.90	土	0.14	-1.18	±	0.13	
c_2	3.20	\pm	0.33	4.19	\pm	0.32	3.52	\pm	0.32	3.73	\pm	0.31	
c_3	-3.99	\pm	0.10	-4.90	\pm	0.08	-5.26	\pm	0.12	-6.00	\pm	0.11	
c_4	2.91	\pm	0.09	3.42	\pm	0.07	3.48	\pm	0.08	3.83	\pm	0.06	
$d_1 + d_2$	4.51	\pm	0.14	4.29	\pm	0.13	5.18	土	0.15	4.94	\pm	0.14	
d_3	-4.03	\pm	0.21	-3.03	\pm	0.20	-5.65	土	0.28	-5.13	\pm	0.25	
d_4	1.01	土	2.10	0.59	\pm	2.04	-2.26	土	1.88	-2.87	\pm	1.76	
d_5	0.18	\pm	0.16	-0.57	\pm	0.15	0.69	\pm	0.18	0.24	\pm	0.16	
d_{10}	-4.79	\pm	1.72	-2.80	\pm	1.76	-7.19	土	1.79	-5.65	\pm	1.81	
d_{11}	-2.48	\pm	1.97	-2.60	\pm	1.98	-2.47	\pm	2.00	-1.34	\pm	1.99	
d_{12}	6.12	\pm	1.72	6.10	\pm	1.74	8.82	\pm	1.78	7.28	\pm	1.76	
d_{13}	-2.16	\pm	2.05	-3.41	\pm	2.05	-1.14	\pm	1.97	-1.32	\pm	1.92	
$d_{14} - d_{15}$	-8.09	\pm	0.25	-6.99	\pm	0.23	-9.54	\pm	0.26	-8.77	\pm	0.24	
d_{16}	4.98	\pm	0.70	5.66	\pm	0.73	-0.70	\pm	0.65	-0.89	\pm	0.63	
e_{10}	-3.60	\pm	4.59	-4.12	\pm	4.56	-3.73	\pm	4.42	-4.91	\pm	4.33	
e_{11}	0.36	土	4.77	0.38	\pm	4.76	2.58	土	4.10	3.30	\pm	3.92	
e_{12}	2.09	\pm	3.71	1.12	\pm	3.81	1.80	\pm	3.52	2.27	\pm	3.51	
e_{13}	-0.63	\pm	3.76	-0.91	\pm	3.81	-2.21	\pm	3.36	-3.20	\pm	3.27	
e_{14}	1.41	\pm	0.11	1.42	\pm	0.10	0.32	\pm	0.12	1.09	\pm	0.11	
e_{15}	-12.59	\pm	0.65	-6.33	\pm	0.56	-5.36	\pm	0.39	-3.37	\pm	0.36	
e_{16}	5.92	\pm	1.31	-1.56	\pm	1.26	0.92	\pm	0.60	-1.48	\pm	0.55	
e_{17}	-0.49	\pm	0.11	-0.44	\pm	0.11	0.47	\pm	0.09	0.02	\pm	0.09	
e_{18}	4.97	\pm	0.49	1.93	\pm	0.39	1.15	\pm	0.28	0.08	\pm	0.22	
e_{34}	0.18	土	4.83	0.31	\pm	4.84	0.86	土	4.77	1.22	土	4.75	
$\overline{\chi^2_{\pi N}}$	183	1 + 16	33	11	119 + 171			147 + 7			79 + 55		
$\chi^2_{\pi N} \ \chi^2_{\pi\pi N}$		233			232			234			238		

 $|c_i| \sim 1.0 < 3.0 < 5.5$ $|d_i| \sim 1.5 < 4.0 < 7.0$ $|e_i| \sim 2.0 < 5.5 < 9.0$


			Н	B		Cov						
LECs		KH			GW			KH			GW	
c_1	-1.49	土	0.20	-1.62	土	0.24	-1.02	土	0.19	-1.63	土	0.20
c_2	0.10	\pm	0.59	1.22	\pm	0.74	1.54	\pm	0.40	1.15	\pm	0.39
c_3	-1.77	\pm	0.11	-2.63	\pm	0.10	-2.52	\pm	0.16	-3.45	\pm	0.15
c_4	1.79	\pm	0.09	2.25	\pm	0.07	2.08	\pm	0.08	2.41	\pm	0.06
$d_1 + d_2$	1.27	\pm	0.15	1.00	\pm	0.14	1.48	\pm	0.16	1.26	\pm	0.15
d_3	-1.95	\pm	0.22	-0.82	\pm	0.21	-2.46	土	0.31	-2.08	\pm	0.27
d_4	2.75	\pm	2.22	2.55	\pm	2.14	-0.15	土	2.19	-1.70	土	2.14
d_5	0.76	\pm	0.17	-0.05	\pm	0.16	0.83	\pm	0.19	0.43	\pm	0.17
d_{10}	-2.65	\pm	2.17	-0.59	\pm	2.39	-1.87	土	2.26	-1.21	土	2.23
d_{11}	-0.55	\pm	2.28	-0.57	\pm	2.29	-1.12	\pm	2.21	0.63	\pm	2.21
d_{12}	-2.06	\pm	2.12	-1.90	\pm	2.17	0.44	\pm	2.06	-0.78	\pm	2.05
d_{13}	-0.52	\pm	2.48	-2.52	\pm	2.80	-0.1	\pm	2.27	0.44	\pm	2.07
$d_{14} - d_{15}$	-2.49	\pm	0.27	-1.29	\pm	0.25	-3.11	\pm	0.28	-2.30	\pm	0.26
d_{16}	3.96	\pm	0.78	4.51	\pm	0.78	3.05	\pm	0.70	1.93	\pm	0.74
e_{10}	0.52	\pm	5.07	0.69	\pm	4.97	0.83	土	5.15	0.15	土	5.00
e_{11}	-1.24	\pm	5.22	-1.62	\pm	5.09	-0.08	\pm	4.73	1.24	\pm	4.41
e_{12}	-1.90	\pm	3.75	-3.17	\pm	3.91	-1.40	\pm	3.85	-0.61	\pm	3.79
e_{13}	-1.57	\pm	4.29	-2.95	\pm	4.41	-1.58	\pm	3.58	-1.76	\pm	3.42
e_{14}	0.63	\pm	0.11	0.75	\pm	0.10	0.37	\pm	0.14	1.28	\pm	0.13
e_{15}	-5.66	\pm	0.72	0.36	\pm	0.70	-1.55	土	0.47	1.14	\pm	0.47
e_{16}	6.81	\pm	2.21	-1.04	\pm	2.69	-0.55	\pm	0.80	-1.75	\pm	0.80
e_{17}	-0.42	\pm	0.11	-0.50	\pm	0.11	-0.11	\pm	0.09	-0.55	\pm	0.09
e_{18}	1.47	\pm	0.50	-1.22	\pm	0.40	-0.23	\pm	0.28	-1.32	\pm	0.22
e_{34}	0.69	土	4.92	1.28	土	4.95	0.72	土	4.82	0.89	土	4.78
$\overline{\chi^2_{\pi N}}$	1:	31 + 6	69	7	79 + 75	3	128 + 6			69 + 47		
$\chi^2_{\pi N} \ \chi^2_{\pi\pi N}$		176			178			180		181		

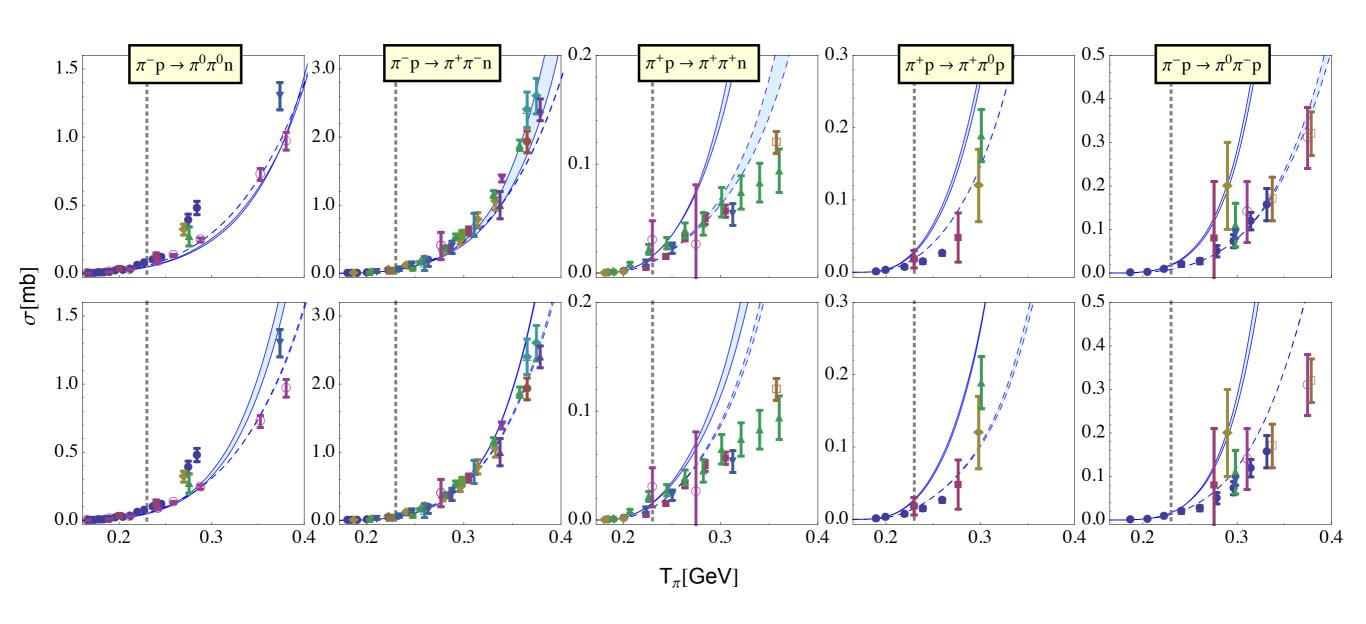
 $|c_i| \sim 1.0 < 3.0 < 5.5$


 $|d_i| \sim 1.5 < 4.0 < 7.0$ $|e_i| \sim 2.0 < 5.5 < 9.0$


Predictions

Partial Waves


Partial Waves



Cross Sections

Cross Sections

Summary

Good description of the phase shifts in $\pi N \rightarrow \pi N$

- Fits in q³ & q⁴ comparable ⇒ convergency
- $\chi PT \sim HB\chi PT \Longrightarrow 1/m_N$ contributions not that important
- higher energy predictions for P₁₁ (R) and P₃₃ (∆) problematic

Fair description of the cross sections in $\pi N \rightarrow \pi\pi N$

- $q^3 > q^4 \Longrightarrow$ bad convergency (too large LECs from $\pi N \rightarrow \pi N$)
- χPT ≥ HBχPT ⇒ 1/m_N contributions important
- role of ∆ and R underestimated?

Future extensions of the combined fit

deltaless: q³ & q⁴ + ΔNLO + RNLO
 deltafull: ε³ + RNLO