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Relevant channels:

Hidden charm baryons
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with the G function regularized in the cutoff method 

Nucleon resonances with negative parity are studied with the energy around 4000 - 4400 MeV as hidden 
charm molecules which are formed with one anti-charmed meson and one charmed baryon

Within a unitary coupled channels approach, s-wave meson-baryon is considered. By the 
use of the on-shell factorization, the amplitude is given by

* the Dbar Λ_c channel is taken into account as an intermediate state   

D̄, D̄⇤

⇤c, ⌃c, ⌃⇤
c

N*(4000-4400)



Hidden charm baryons
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Interaction V: based on the extended local hidden gauge approach [1,2,3]

[1] M. Bando, T. Kugo, S. Uehara, K. Yamawaki and T. Yanagida, Phys. Rev. Lett. 54, 1215 (1985)  
[2] M. Bando, T. Kugo and K. Yamawaki, Phys. Rept. 164,  217 (1988)   
[3] U. G. Meissner, Phys. Rept. 161, 213 (1988) 
[4] K. P. Khemchandani, A. Martinez Torres, H. Kaneko, H. Nagahiro and A. Hosaka, Phys. Rev. D 84, 094018 (2011) 
[5] E. J. Garzon and E. Oset, Phys. Rev. C 91, 025201 (2015)

PB-VB mixing: found to be important (even in the lighter sectors) [4,5]

mass difference between P and V is small -> full coupled channels approach
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Vector exchange driving force
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→Weinberg-Tomozawa (WT) interaction

Local hidden gauge approach extended to SU(4) provides relevant vertices [6]
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P P

V

B B

V V

V

• Heavy Quark Spin Symmetry (HQSS) is automatically fulfilled  
• VB interaction has spin degeneracy [7] 
• No off-diagonal potential

LPPV = �ighV µ[P, @µP ]i LV V V = ighV µ[V ⌫ , @µV⌫ ]i

LBBV = g
�
hB̄�µ[V

µ, B]i+ hB̄�µBihV µi
�

P, V, B: pseudoscalar, vector, baryon fields matrix in SU(4)

* In [6], the lighter states were found not to modify the energy and simply give ~30 MeV width to the generated states. 
[6] J. -J. Wu, R. Molina, E. Oset and B. S. Zou, Phys. Rev. Lett. 105, 232001 (2010)  
[7] E. Oset  and A. Ramos Eur. Phys. J. A 44, 445–454 (2010)
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PB-VB mixing
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pion exchange term

VPP vertices are given by the local hidden gauge: pion exchange term 
Constraint of gauge invariance: contact term

PB-VB mixing intermediated by a pion depends on the momentum transfer 
→ the box diagram

Evaluation of BBπ vertices :

B B

P V

π

B B

P V

Kroll-Ruderman contact term

~q · ~✏

~q · ~� ~✏ · ~�

[8] E. J. Garzon and E. Oset, Eur. Phys. J. A 48, 5 (2012)

⇡⌃c⌃
⇤
c

⇡⇤c⌃
⇤
c

⇡⇤c⇤c

•          : negligible 
•          : negligible 
•          : prohibited from the isospin conservation

Transition including ⌃c

⌃⇤
c

⇤c

Transition including

D̄⌃c $ D̄⇤⌃c

D̄⌃c $ D̄⇤⇤c

D̄⇤c $ D̄⇤⌃c

D̄⌃⇤
c $ D̄⇤⌃⇤

c

Following the local hidden gauge approach, we can have PB-VB mixing terms [8]

momentum dependent momentum independent 

~q



PB-VB-PB box potentials
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J=1/2

J=3/2

D̄⌃c ! D̄⇤⌃c ! D̄⌃c

D̄⌃c ! D̄⇤⇤c ! D̄⌃c

D̄⌃⇤
c ! D̄⇤⌃⇤

c ! D̄⌃⇤
c

Momentum transfer q is integrated out in the following box diagrams where one pion is emitted and later 
absorbed. These potentials are added to the PB driving force as momentum independent functions.
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�VPC�VCP�VPP �VCC

�V = �VPP + 2�VCP + �VCC

�V = �VPP + 2�VCP + �VCC

s-wave VB intermediate states

~q ~q

PP box: VB intermediate states are not necessarily only in the s-wave  
CP, PC, PP boxes: VB intermediate states are in the s-wave 



VB-PB-VB box potentials (breaking the degeneracy)
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→These VB box potentials resolve the spin degeneracy of the VB sectors

J=1/2

J=3/2

D̄⇤⌃c ! D̄⌃c ! D̄⇤⌃c

D̄⇤⌃c ! D̄⇤c ! D̄⇤⌃c

D̄⇤⇤c ! D̄⌃c ! D̄⇤⌃c
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c

�V
0
= �V

0

PP + 2�V
0

CP + �V
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s-wave PB intermediate states

PP box: VB intermediate states are not necessarily only in the s-wave  
CP, PC, PP boxes: VB intermediate states are in the s-wave 

Corrections to the VB driving force with PB intermediate states



Effective transition potential
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In order to fully take into account the PB-VB mixing, one step further, we implement the full coupled 
channels calculation by constructing the effective PB-VB transition potential [9]

[9] W. H. Liang, T. Uchino, C. W. Xiao and E. Oset, Eur. Phys. J. A 51 (2015) 2, 16
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• s-wave components: used to construct the effective potentials 
• d-wave (and other) components: kept in the box potentials yet



Box diagram potential - Anomalous VVP term
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Anomalous VVP vertex also provides the VB-VB potential via pion exchange [10,11]

B B

V V

π

�Van

This VB - VB potential does not interfere with the WT interaction at tree level 
→ These contributions are taken into account as box diagrams

LV V P =
Gp
2
✏µ⌫↵�h@µV⌫@↵V�i

These box potentials just give extra contributions (attractions) only to VB potentials
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V

V

π

V

π
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[10] A. Bramon, A. Grau and G. Pancheri, Phys. Lett. B 344, 240 (1995) 
[11] E. Oset, J. R. Pelaez and L. Roca, Phys. Rev. D 67, 073013 (2003)

D̄⇤⌃⇤
c ! D̄⇤⌃⇤

c ! D̄⇤⌃⇤
c

D̄⇤⌃c ! D̄⇤⌃c ! D̄⇤⌃c

D̄⇤⌃c ! D̄⇤⇤c ! D̄⇤⌃c

D̄⇤⇤c ! D̄⇤⌃c ! D̄⇤⌃c
=

Box diagram including ⌃c ⇤c

⌃⇤
cBox diagram including

G = 3M2
V /16⇡

2f2
⇡ ⇠ 14GeV�1

*An anomalous process, like the V V P interaction, is one that does not conserve “natural” parity. The “natural” parity of a particle is defined as 
follows: it is +1 if the particle transforms as a true tensor of that rank, and −1 if it transforms as a pseudotensor, e.g. π, γ, ρ and a1 have “natural” 
parity −1, +1, +1 and −1, respectively. 



The generated states: parameters, analysis
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Three cutoff parameters, two for the G functions of PB and of VB intermediate states and one for all the box 
diagrams, are used.

Tij(
p
s) ⇠ gigjp

s�MB

Tij(
p
s) ⇠ gigjp

s�MR + i�R/2

limp
s!MB

(
p
s�MB)Tij(

p
s) = gigj

ImTij(MR) ⇠ � 2

�R
gigj giGi(MR)

giGi(MB)

resonances

Analysis of the generated states 

*The value gG at the energy of generated states provides the wave function at the origin [12] 
-> evaluate the component of the generated states in the coupled channel

[12] D. Gamermann, J. Nieves, E. Oset and E. Ruiz Arriola,  Phys. Rev. D 81, 014029 (2010)

set I set II set III
qB
max

600 800 1000
qV
max

771 737 715
qP
max

527 500 483

These values were chosen to reproduce two Lambda_c resonances in the previous work [9]

Cutoff parameters

bound states

All the generated states are measured on the real axis, not in the complex energy plane

wave function at the origin*coupling constants

bound pole

resonance peak



Results I: states generated by 
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D̄⌃c(4321)

D̄⇤⌃c(4462)

D̄⇤⇤c(4295)
4295

4227

• One VB bound state and two PB-VB admixture states appear 
• In both admixture states, VB component is stronger than PB component 
• Two admixture states are orthogonal: the relative sign of gG  
• In the coupled channel, without the transition potential, energy of the two states are very close 
• The mass difference between two orthogonal states is ~ 60 MeV

PB(WT) 
VB(WT+an)

PB(WT+d-wave) 
VB(WT+an) full

J=3/2 J=1/2

full

4217

WT+an

WT
coupling constants and wave 

functions at the origin

1p
2

�
|D̄⇤⌃ci± |D̄⌃ci

�
~

Two orthogonal states emerge 



Results II: states generated by  
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4374

4320

PB(WT) 
VB(WT+an)

PB(WT+d-wave+…) 
VB(WT+an+d-wave) full

J=1/2,5/2 J=3/2

full

4344

WT+an

WT
coupling constants and wave 

functions at the origin

D̄⌃⇤
c(4385)

D̄⇤⌃⇤
c(4527)

1p
2

�
|D̄⇤⌃⇤

ci± |D̄⌃⇤
ci
�

~

Two orthogonal states emerge 

• One VB bound state and two PB-VB admixture states appear 
• In both admixture states, VB component is stronger than PB component 
• Two admixture states are orthogonal: the relative sign of gG  
• In the coupled channel, without the transition potential, energy of the two states are very close 
• The mass difference between two orthogonal states is ~ 60 MeV



Summary
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• Negative parity nucleon resonances with energy 4000-4400 are studied at the 
viewpoint of the hidden charm hadron molecule. 

• Based on the local hidden gauge approach extended to SU(4), we have the WT term 
and the PB-VB mixing term. In addition, we also consider the extra VB potential from 
the anomalous VVP interaction.   

• The full coupled channels calculation is implemented with the effective transition 
potential from the relevant parts of the PB-VB mixing term. 

• Very similar results are obtained in the two sectors, one contains the spin 1/2 baryon 
and the other contains the 3/2 baryons → HQSS as to Σ_c and Σ_c*

• One VB bound states and two PB-VB admixture states 
• From the evaluation of the states with the wave function at the origin, this 

two admixture states are found to be roughly orthogonal



Summary of the numerical results
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The width in brackets is the effect of the couplings to the lighter sector 

main channel J (E, �) [MeV] main decay channels
1p
2
(D̄⇤⌃c + D̄⌃c) 1/2 4228, 21(51) D̄⇤c

1p
2
(D̄⇤⌃c � D̄⌃c) 1/2 4295, 11(41) D̄⇤c

D̄⇤⌃c 3/2 4218, 103 D̄⇤c

D̄⇤⌃⇤
c 1/2, 5/2 4344, 0 �

1p
2
(D̄⇤⌃⇤

c + D̄⌃⇤
c) 3/2 4325, 0 �

1p
2
(D̄⇤⌃⇤

c � D̄⌃⇤
c) 3/2 4378, 0 �



Thank you!



Backup slides



Full coupled channels I: 
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J=1/2: coupled channels
0

BB@

D̄⌃c D̄⇤⌃c D̄⇤⇤c

D̄⌃c VWT 0 0
D̄⇤⌃c VWT 0
D̄⇤⇤c VWT

1

CCA

0

BB@

D̄⌃c D̄⇤⌃c D̄⇤⇤c

D̄⌃c �Vd(D̄⇤⌃c) + �Vd(D̄⇤⇤c) Ve↵ Ve↵

D̄⇤⌃c 0 0
D̄⇤⇤c 0

1

CCA

0

@
D̄⇤⌃c D̄⇤⇤c

D̄⇤⌃c VWT 0
D̄⇤⇤c VWT

1

A

0

@
D̄⇤⌃c D̄⇤⇤c

D̄⇤⌃c �Van(D̄⇤⌃c) + �Van(D̄⇤⇤c) 0
D̄⇤⇤c �Van(D̄⇤⌃c)

1

A

0

@
D̄⇤⌃c D̄⇤⇤c

D̄⇤⌃c �V (D̄⌃c) + �V (D̄⇤c) 0
D̄⇤⇤c �V (D̄⌃c)

1

A

+V =

+

J=3/2: two single channels

V =

+

+

d-wave box potentials are added only to PB sector

There is no transition between two channels -> two single channels

0

BB@

D̄⌃c D̄⇤⌃c D̄⇤⇤c

D̄⌃c 0 0 0
D̄⇤⌃c �Van(D̄⇤⌃c) + �Van(D̄⇤⇤c) 0
D̄⇤⇤c �Van(D̄⇤⌃c)

1

CCA



Full coupled channels II: 
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✓
D̄⇤⌃⇤

c

D̄⇤⌃⇤
c VWT

◆ ✓
D̄⇤⌃⇤

c

D̄⇤⌃⇤
c �V (D̄⌃⇤

c)

◆ ✓
D̄⇤⌃⇤

c

D̄⇤⌃⇤
c �Van(D̄⇤⌃⇤

c)

◆

0

@
D̄⌃⇤

c D̄⇤⌃⇤
c

D̄⌃⇤
c VWT 0

D̄⇤⌃⇤
c VWT

1

A
0

@
D̄⌃⇤

c D̄⇤⌃⇤
c

D̄⌃⇤
c �V 6=s(D̄⇤⌃⇤

c) Ve↵

D̄⇤⌃⇤
c �Vd(D̄⌃⇤

c)

1

A

0

@
D̄⌃⇤

c D̄⇤⌃⇤
c

D̄⌃⇤
c 0 0

D̄⇤⌃⇤
c �Van(D̄⇤⌃⇤

c)

1

A

Ve↵ = Ṽ
0

e↵ =

s
�V 0

s (D̄⌃⇤
c)

GD̄⌃⇤
c

�V 6=s(D̄
⇤⌃⇤

c) = �V
total

(D̄⇤⌃⇤
c)� V

e↵

G
¯D⇤

⌃

⇤
c
V
e↵

J=1/2, 5/2: single channel

J=3/2: coupled channels

V =

V =

+ +

+

+

It is not simple to extract the s-wave component of the VB intermediate state

s-wave



Uncertainty from the cutoff 
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set I set II set III
qB
max

600 800 1000
qV
max

771 737 715
qP
max

527 500 483

set I set II set III
peak 1 4241.7 4227.6 4218.6
width 1 19.5 21.1 21.5
peak 2 4296.8 4295.1 4294.5
width 2 13.1 10.6 9.6

set I set II set III
peak 4250.5 4217.7 4205.8
width 140.8 103.2 82.0

set I set II set III

Pole 4354.5 4344.1 4337.5
set I set II set III

Pole 1 4330.6 4324.9 4319.9
Pole 2 4384.1 4377.8 4374.4

J=3/2
J=1/2, 5/2

J=1/2

*J=3/2

Except the * sector, the uncertainty is ~ ± 10 MeV



Extract the s-wave component from the box
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When an intermediate state of a PP box has s- wave and d-wave components…
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π

B B B

V
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V

BB B

V

P

π

V

B

intermediate states are

always in the s-wave 

intermediate states are

not necessarily in the s-wave 

(~� · ~q) (~✏ · ~q) ! ✏iqi�jqj = ✏i�j

⇢
1

3
q2�ij +

✓
qiqj �

1

3
q2�ij

◆�

s-wave 

�VPP !
⇢

�V s
PP = 1

3�VPP

�V d
PP = 2

3�VPP

In the same manner, one can also decompose the the VB-PB-VB box potentials with the same 
factor, 1/3 and 3/2

qiqj !
1

3
q2�ij



Sign of the effective transition potential
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From the definition, each ingredient of the effective potential is found to be a doubled-value function.

T12(
p
s) ⇠ ± g1g2p

s�MR + i�R

Energies of generated states: not depend 
Relative sign of coupling constants (and wave function at the origin): depend

In the case of the two coupled channels, the change of sign of the transition potentials 

Ṽe↵ = ±

s
�V (PB ! V B ! PB)

GV B
Ṽ

0

e↵ = ±

s
�V 0(V B ! PB ! V B)

GPB

Not to be cancelled out, the two signs should be taken as the same

Ve↵ = ±1

2

⇣
Ṽe↵ + Ṽ

0

e↵

⌘

T =

✓
T11 ±T12

T22

◆
V =

✓
V11 ±V12

V22

◆
T=V+VGT

close to the pole

In the present work, we utilize the effective potentials with negative real part 
(as virtual pion is exchanged)



G function: dimensional regularisation vs cutoff
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Real and imaginary part of the G function regularised in several ways

Amplitude can have unphysical poles 
below the threshold: dimensional regularisation 
above the threshold: cut off

K. P. Khemchandani, A. Martinez Torres, H. Kaneko, H. Nagahiro and A. Hosaka, Phys. Rev. D 84, 094018 (2011)

Recalling the form of the scattering amplitude T = V + V GT =
V

1� V G

Even with repulsive interactions (ReV > 0), the denominator of the amplitude can be 0

has the repulsive interaction and its threshold is below the generated states


