Baryon states with hidden charm in the extended local hidden gauge approach

Toshitaka Uchino
Wei-Hong Liang, Eulogio Oset

Hidden charm baryons

Nucleon resonances with negative parity are studied with the energy around $4000-4400 \mathrm{MeV}$ as hidden
charm molecules which are formed with one anti-charmed meson and one charmed baryon
\bar{D}, \bar{D}^{*}

Relevant channels: $\bar{D} \Lambda_{c} \bar{D} \Sigma_{c} \bar{D}^{*} \Lambda_{c} \bar{D}^{*} \Sigma_{c} \bar{D} \Sigma_{c}^{*} \bar{D}^{*} \Sigma_{c}^{*}$
Within a unitary coupled channels approach, s-wave meson-baryon is considered. By the use of the on-shell factorization, the amplitude is given by

$$
T=V+V G T=\frac{V}{1-V G}
$$

with the G function regularized in the cutoff method

$$
G_{l}(\sqrt{s})=\int_{|\vec{q}| \leq q_{\max }} \frac{d^{3} q}{(2 \pi)^{3}} \frac{\omega_{l}+E_{l}}{2 \omega_{l} E_{l}} \frac{2 M_{l}}{P^{02}-\left(\omega_{l}+E_{l}\right)^{2}+i \epsilon}
$$

* the Dbar $\wedge _c$ channel is taken into account as an intermediate state

Hidden charm baryons

Interaction V: based on the extended local hidden gauge approach [1,2,3]

PB-VB mixing: found to be important (even in the lighter sectors) [4,5]

mass difference between P and V is small -> full coupled channels approach

[^0]
Vector exchange driving force

Local hidden gauge approach extended to SU(4) provides relevant vertices [6]

$\mathrm{P}, \mathrm{V}, \mathrm{B}$: pseudoscalar, vector, baryon fields matrix in SU(4) $\quad g=M_{V} / 2 f_{\pi}$
\rightarrow Weinberg-Tomozawa (WT) interaction
$V_{i j}=-\frac{C_{i j}}{4 f^{2}}\left(2 \sqrt{s}-M_{B_{i}}-M_{B_{j}}\right) \sqrt{\frac{M_{B_{i}}+E_{i}}{2 M_{B_{i}}}} \sqrt{\frac{M_{B_{j}}+E_{j}}{2 M_{B_{j}}}} \quad C_{i j}=\left\{\begin{array}{cc}1 & \bar{D} \Sigma_{c}(J=1 / 2), \bar{D}^{*} \Sigma_{c}(J=1 / 2,3 / 2) \\ & \bar{D} \Sigma_{c}^{*}(J=3 / 2), \bar{D}^{*} \Sigma_{c}^{*}(J=1 / 2,3 / 2,5 / 2) \\ -1 & \bar{D} \Lambda_{c}(J=1 / 2), \bar{D}^{*} \Lambda_{c}(J=1 / 2,3 / 2) \\ \text { off }- \text { diagonal }\end{array}\right.$

> | - Heavy Quark Spin Symmetry (HQSS) is automatically fulfilled |
| :--- |
| - VB interaction has spin degeneracy [7] |
| - No off-diagonal potential |

* In [6], the lighter states were found not to modify the energy and simply give $\sim 30 \mathrm{MeV}$ width to the generated states.
[6] J. -J. Wu, R. Molina, E. Oset and B. S. Zou, Phys. Rev. Lett. 105, 232001 (2010)
[7] E. Oset and A. Ramos Eur. Phys. J. A 44, 445-454 (2010)

PB-VB mixing

Following the local hidden gauge approach, we can have PB-VB mixing terms [8]
VPP vertices are given by the local hidden gauge: pion exchange term
Constraint of gauge invariance: contact term

pion exchange term
momentum dependent
Evaluation of $B B \pi$ vertices :

$$
\begin{aligned}
& \text { - } \pi \Sigma_{c} \Sigma_{c}^{*} \text { : negligible } \\
& \text { - } \pi \Lambda_{c} \Sigma_{c}^{*} \text { : negligible } \\
& \text { - } \pi \Lambda_{c} \Lambda_{c} \text { : prohibited from the isospin conservation } \\
& \hline
\end{aligned}
$$

Kroll-Ruderman contact term momentum independent

Transition including $\quad \Sigma_{c} \Lambda_{c}$ $\begin{array}{rlll}\bar{D} \Sigma_{c} & \leftrightarrow & \bar{D}^{*} \Sigma_{c} \\ \bar{D} \Sigma_{c} & \leftrightarrow & \bar{D}^{*} \Lambda_{c}\end{array}$
\rightarrow

Transition including $\quad \Sigma_{c}^{*}$

$$
\bar{D} \Sigma_{c}^{*} \quad \leftrightarrow \quad \bar{D}^{*} \Sigma_{c}^{*}
$$

PB-VB mixing intermediated by a pion depends on the momentum transfer \rightarrow the box diagram
[8] E. J. Garzon and E. Oset, Eur. Phys. J. A 48, 5 (2012)

PB-VB-PB box potentials

Momentum transfer q is integrated out in the following box diagrams where one pion is emitted and later absorbed. These potentials are added to the PB driving force as momentum independent functions.

$\delta V_{P P}$

$\delta V_{C P}$

$\delta V_{P C}$

$\delta V_{C C}$
s-wave VB intermediate states

$$
\begin{aligned}
& \bar{D} \Sigma_{c} \rightarrow \bar{D}^{*} \Sigma_{c} \rightarrow \bar{D} \Sigma_{c} \quad \mathrm{~J}=1 / 2 \quad \delta V=\delta V_{P P}+2 \delta V_{C P}+\delta V_{C C} \\
& \bar{D} \Sigma_{c} \rightarrow \bar{D}^{*} \Lambda_{c} \rightarrow \bar{D} \Sigma_{c} \\
& \bar{D} \Sigma_{c}^{*} \rightarrow \bar{D}^{*} \Sigma_{c}^{*} \rightarrow \bar{D} \Sigma_{c}^{*} \mathrm{~J}=3 / 2 \quad \delta V=\delta V_{P P}+2 \delta V_{C P}+\delta V_{C C}
\end{aligned}
$$

PP box: VB intermediate states are not necessarily only in the s-wave
CP, PC, PP boxes: VB intermediate states are in the s-wave

VB-PB-VB box potentials (breaking the degeneracy)

Corrections to the VB driving force with PB intermediate states

$\delta V_{P P}^{\prime}$

$\delta V_{C P}^{\prime}$

s-wave PB intermediate states

$$
\begin{aligned}
& \bar{D}^{*} \Sigma_{c} \rightarrow \bar{D} \Sigma_{c} \rightarrow \bar{D}^{*} \Sigma_{c} \\
& \bar{D}^{*} \Sigma_{c} \rightarrow \bar{D} \Lambda_{c} \rightarrow \bar{D}^{*} \Sigma_{c} \\
& \bar{D}^{*} \Lambda_{c} \rightarrow \bar{D} \Sigma_{c} \rightarrow \bar{D}^{*} \Sigma_{c}
\end{aligned} \quad \mathrm{~J}=3 / 2 \quad \delta V^{\prime}=\delta V_{P P}^{\prime}+2 \delta V_{C P}^{\prime}+\delta V_{C C}^{\prime}
$$

$$
\bar{D}^{*} \Sigma_{c}^{*} \rightarrow \bar{D} \Sigma_{c}^{*} \rightarrow \bar{D}^{*} \Sigma_{c}^{*} \begin{gathered}
\mathrm{J}=1 / 2,5 / 2 \\
\mathrm{~J}=3 / 2
\end{gathered} \delta V^{\prime}=\delta V_{P P}^{\prime} .
$$

PP box: VB intermediate states are not necessarily only in the s-wave
CP, PC, PP boxes: VB intermediate states are in the s-wave
\rightarrow These VB box potentials resolve the spin degeneracy of the VB sectors

Effective transition potential

In order to fully take into account the PB-VB mixing, one step further, we implement the full coupled channels calculation by constructing the effective PB-VB transition potential [9]

- s-wave components: used to construct the effective potentials
- d-wave (and other) components: kept in the box potentials yet

Box diagram potential - Anomalous VVP term

Anomalous WVP vertex also provides the VB-VB potential via pion exchange [10,11]

This VB - VB potential does not interfere with the WT interaction at tree level
\rightarrow These contributions are taken into account as box diagrams

$$
\begin{array}{rllll}
\text { Box diagram including } & \Sigma_{c} & \Lambda_{c} \\
\bar{D}^{*} \Sigma_{c} & \rightarrow & \bar{D}^{*} \Sigma_{c} & \rightarrow & \bar{D}^{*} \Sigma_{c} \\
\bar{D}^{*} \Sigma_{c} & \rightarrow & \bar{D}^{*} \Lambda_{c} & \rightarrow & \bar{D}^{*} \Sigma_{c} \\
\bar{D}^{*} \Lambda_{c} & \rightarrow & \bar{D}^{*} \Sigma_{c} & \rightarrow & \bar{D}^{*} \Sigma_{c}
\end{array}
$$

Box diagram including $\quad \Sigma_{c}^{*}$

$$
\bar{D}^{*} \Sigma_{c}^{*} \rightarrow \bar{D}^{*} \Sigma_{c}^{*} \rightarrow \bar{D}^{*} \Sigma_{c}^{*}
$$

These box potentials just give extra contributions (attractions) only to VB potentials
*An anomalous process, like the V V P interaction, is one that does not conserve "natural" parity. The "natural" parity of a particle is defined as follows: it is +1 if the particle transforms as a true tensor of that rank, and -1 if it transforms as a pseudotensor, e.g. π, γ, ρ and a_{1} have "natural" parity $-1,+1,+1$ and -1 , respectively.

The generated states: parameters, analysis

Cutoff parameters

Three cutoff parameters, two for the G functions of PB and of VB intermediate states and one for all the box diagrams, are used.

	set I	set II	set III
$q_{\max }^{B}$	600	800	1000
$q_{\max }^{V}$	771	737	715
$q_{\max }^{P}$	527	500	483

These values were chosen to reproduce two Lambda_c resonances in the previous work [9]

Analysis of the generated states

All the generated states are measured on the real axis, not in the complex energy plane
bound states

resonances

$$
T_{i j}(\sqrt{s}) \sim \frac{g_{i} g_{j}}{\sqrt{s}-M_{R}+i \Gamma_{R} / 2} \quad \longrightarrow \quad \operatorname{Im} T_{i j}\left(M_{R}\right) \sim-\frac{2}{\Gamma_{R}} g_{i} g_{j}
$$

resonance peak
coupling constants
wave function at the origin*
$\longrightarrow \quad g_{i} G_{i}\left(M_{R}\right)$
*The value gG at the energy of generated states provides the wave function at the origin [12]
-> evaluate the component of the generated states in the coupled channel

Results I: states generated by $\bar{D} \Sigma_{c} \bar{D}^{*} \Lambda_{c} \bar{D}^{*} \Sigma_{c}$

- One VB bound state and two PB-VB admixture states appear
- In both admixture states, VB component is stronger than PB component
- Two admixture states are orthogonal: the relative sign of gG
- In the coupled channel, without the transition potential, energy of the two states are very close
- The mass difference between two orthogonal states is $\sim 60 \mathrm{MeV}$

Results II: states generated by $\bar{D} \Sigma_{c}^{*} \bar{D}^{*} \Sigma_{c}^{*}$

- One VB bound state and two PB-VB admixture states appear
- In both admixture states, VB component is stronger than PB component
- Two admixture states are orthogonal: the relative sign of gG
- In the coupled channel, without the transition potential, energy of the two states are very close
- The mass difference between two orthogonal states is $\sim 60 \mathrm{MeV}$

Summary

- Negative parity nucleon resonances with energy 4000-4400 are studied at the viewpoint of the hidden charm hadron molecule.
- Based on the local hidden gauge approach extended to SU(4), we have the WT term and the $\mathrm{PB}-\mathrm{VB}$ mixing term. In addition, we also consider the extra VB potential from the anomalous WVP interaction.
- The full coupled channels calculation is implemented with the effective transition potential from the relevant parts of the PB-VB mixing term.
- Very similar results are obtained in the two sectors, one contains the spin $1 / 2$ baryon and the other contains the $3 / 2$ baryons \rightarrow HQSS as to $\Sigma _c$ and $\Sigma _^{\star}$
- One VB bound states and two PB-VB admixture states
- From the evaluation of the states with the wave function at the origin, this two admixture states are found to be roughly orthogonal

Summary of the numerical results

main channel	J	$(E, \Gamma)[\mathrm{MeV}]$	main decay channels
$\frac{1}{\sqrt{2}}\left(\bar{D}^{*} \Sigma_{c}+\bar{D} \Sigma_{c}\right)$	$1 / 2$	$4228,21(51)$	$\bar{D} \Lambda_{c}$
$\frac{1}{\sqrt{2}}\left(\bar{D}^{*} \Sigma_{c}-\bar{D} \Sigma_{c}\right)$	$1 / 2$	$4295,11(41)$	$\bar{D} \Lambda_{c}$
$D^{*} \Sigma_{c}$	$3 / 2$	4218,103	$\bar{D} \Lambda_{c}$
$\bar{D}^{*} \Sigma_{c}^{*}$	$1 / 2,5 / 2$	4344,0	-
$\frac{1}{\sqrt{2}}\left(\bar{D}^{*} \Sigma_{c}^{*}+\bar{D} \Sigma_{c}^{*}\right)$	$3 / 2$	4325,0	-
$\frac{1}{\sqrt{2}}\left(\bar{D}^{*} \Sigma_{c}^{*}-\bar{D} \Sigma_{c}^{*}\right)$	$3 / 2$	4378,0	-

The width in brackets is the effect of the couplings to the lighter sector

Thank you!

Backup slides

Full coupled channels I: $\bar{D} \Sigma_{c} \bar{D}^{*} \Lambda_{c} \bar{D}^{*} \Sigma_{c}$

$J=1 / 2$: coupled channels

$$
\begin{aligned}
& \mathrm{V}=\left(\begin{array}{c|ccc}
& \bar{D} \Sigma_{c} & \bar{D}^{*} \Sigma_{c} & \bar{D}^{*} \Lambda_{c} \\
\hline D_{c} \Sigma_{c} & V_{W T} & 0 & 0 \\
\bar{D}^{*} \Sigma_{c} & & V_{W T} & 0 \\
\bar{D}^{*} \Lambda_{c} & & & V_{W T}
\end{array}\right)+\left(\begin{array}{cccc}
& \bar{D} \Sigma_{c} & \bar{D}^{*} \Sigma_{c} & \bar{D}^{*} \Lambda_{c} \\
\hline D \Sigma_{c} & \delta V_{d}\left(D^{*} \Sigma_{c}\right)+\delta V_{d}\left(D^{*} \Lambda_{c}\right) & V_{\text {eff }} & V_{\text {eff }} \\
\bar{D}^{*} \Sigma_{c} & & 0 & 0 \\
\bar{D}^{*} \Lambda_{c} & & 0
\end{array}\right) \\
& +\left(\begin{array}{c|ccc}
& \bar{D} \Sigma_{c} & \bar{D}^{*} \Sigma_{c} & \bar{D}^{*} \Lambda_{c} \\
\hline \bar{D} \Sigma_{c} & 0 & 0 & 0 \\
\bar{D}^{*} \Sigma_{c} & & \delta V_{\mathrm{an}}\left(\bar{D}^{*} \Sigma_{c}\right)+\delta V_{\mathrm{an}}\left(\bar{D}^{*} \Lambda_{c}\right) & 0 \\
\bar{D}^{*} \Lambda_{c} & & & \delta V_{\mathrm{an}}\left(\bar{D}^{*} \Sigma_{c}\right)
\end{array}\right)
\end{aligned}
$$

d-wave box potentials are added only to PB sector
$J=3 / 2$: two single channels

$$
\begin{aligned}
& \mathrm{V}=\left(\begin{array}{c|cc}
& \bar{D}^{*} \Sigma_{c} & \bar{D}^{*} \Lambda_{c} \\
\hline \bar{D}^{*} \Sigma_{c} & V_{W T} & 0 \\
\bar{D}^{*} \Lambda_{c} & & V_{W T}
\end{array}\right)+\left(\begin{array}{c|cc}
& \bar{D}^{*} \Sigma_{c} & \bar{D}^{*} \Lambda_{c} \\
\hline \bar{D}^{*} \Sigma_{c} & \delta V\left(D \Sigma_{c}\right)+\delta V\left(\bar{D} \Lambda_{c}\right) & 0 \\
\bar{D}^{*} \Lambda_{c} & \delta V\left(\bar{D} \Sigma_{c}\right)
\end{array}\right) \\
& +\left(\begin{array}{c|cc}
& \bar{D}^{*} \Sigma_{c} & \bar{D}^{*} \Lambda_{c} \\
\hline \bar{D}^{*} \Sigma_{c} & \delta V_{\mathrm{an}}\left(\bar{D}^{*} \Sigma_{c}\right)+\delta V_{\mathrm{an}}\left(\bar{D}^{*} \Lambda_{c}\right) & 0 \\
\bar{D}^{*} \Lambda_{c} & \delta V_{\mathrm{an}}\left(\bar{D}^{*} \Sigma_{c}\right)
\end{array}\right)
\end{aligned}
$$

There is no transition between two channels -> two single channels

Full coupled channels II: $\bar{D} \Sigma_{c}^{*} \bar{D}^{*} \Sigma_{c}^{*}$

$J=1 / 2,5 / 2$: single channel

$$
\mathrm{V}=\left(\begin{array}{c|c|c}
& \bar{D}^{*} \Sigma_{c}^{*} \\
\hline \bar{D}^{*} \Sigma_{c}^{*} & V_{W T}
\end{array}\right)+\left(\begin{array}{c|c}
& \bar{D}^{*} \Sigma_{c}^{*} \\
\hline \bar{D}^{*} \Sigma_{c}^{*} & \delta V\left(\bar{D} \Sigma_{c}^{*}\right)
\end{array}\right)+\left(\begin{array}{c}
\\
\hline \bar{D}^{*} \Sigma_{c}^{*} \\
\delta V_{\mathrm{an}}^{*}\left(\Sigma_{c}^{*} \Sigma_{c}^{*}\right)
\end{array}\right)
$$

$J=3 / 2$: coupled channels

$$
\begin{aligned}
& \mathrm{V}=\left(\begin{array}{c|cc}
& \bar{D} \Sigma_{c}^{*} & \bar{D}^{*} \Sigma_{c}^{*} \\
\hline \bar{D} \Sigma_{c}^{*} & V_{W T} & 0 \\
\bar{D}^{*} \Sigma_{c}^{*} & & V_{W T}
\end{array}\right)+\left(\begin{array}{c|cc}
& \bar{D} \Sigma_{c}^{*} & \bar{D}^{*} \Sigma_{c}^{*} \\
\hline \bar{D} \Sigma_{c}^{*} & \delta V_{\neq s}\left(\bar{D}^{*} \Sigma_{c}^{*}\right) & V_{\text {eff }} \\
\bar{D}^{*} \Sigma_{c}^{*} & & \delta V_{d}\left(\bar{D} \Sigma_{c}^{*}\right)
\end{array}\right) \\
& +\left(\begin{array}{c|cc}
& \bar{D} \Sigma_{c}^{*} & \bar{D}^{*} \Sigma_{c}^{*} \\
\hline \bar{D} \Sigma_{c}^{*} & 0 & 0 \\
\bar{D}^{*} \Sigma_{c}^{*} & & \delta V_{\mathrm{an}}\left(\bar{D}^{*} \Sigma_{c}^{*}\right)
\end{array}\right)
\end{aligned}
$$

It is not simple to extract the s-wave component of the VB intermediate state

$$
V_{\mathrm{eff}}=\tilde{V}_{\mathrm{eff}}^{\prime}=\sqrt{\frac{\delta V_{s}^{\prime}\left(\bar{D} \Sigma_{c}^{*}\right)}{G_{\bar{D} \Sigma_{c}^{*}}} \longrightarrow \delta V_{\neq s}\left(\bar{D}^{*} \Sigma_{c}^{*}\right)=\delta V_{\text {total }}\left(\bar{D}^{*} \Sigma_{c}^{*}\right)-V_{\mathrm{eff}} G_{\bar{D}^{*} \Sigma_{c}^{*}} V_{\mathrm{eff}}} \text { s-wave}
$$

Uncertainty from the cutoff

	set I	set II	set III
$q_{\max }^{B}$	600	800	1000
$q_{\max }^{V}$	771	737	715
$q_{\max }^{P}$	527	500	483

	set I	set II	set III
peak 1	4241.7	4227.6	4218.6
width 1	19.5	21.1	21.5
peak 2	4296.8	4295.1	4294.5
width 2	13.1	10.6	9.6

$\mathrm{J}=\mathbf{1 / 2} \quad \bar{D} \Sigma_{c} \bar{D}^{*} \Sigma_{c} \quad \bar{D}^{*} \Lambda_{c}$

	set I	set II	set III
Pole	4354.5	4344.1	4337.5

$\mathbf{J}=1 / 2,5 / 2 \quad \bar{D}^{*} \Sigma_{c}^{*}$

	set I	set II	set III
peak width	4250.5	4217.7	4205.8
$\mathbf{* J}=\mathbf{3 / 2}$			
$\bar{D}^{*} \Sigma_{c} \bar{D}^{*} \Lambda_{c}$			

	set I	set II	set III
Pole 1	4330.6	4324.9	4319.9
Pole 2	4384.1	4377.8	4374.4
$\mathbf{J = 3 / 2} \bar{D} \Sigma_{c}^{*} \bar{D}^{*} \Sigma_{c}^{*}$			

Except the * sector, the uncertainty is $\sim \pm 10 \mathrm{MeV}$

Extract the s-wave component from the box

intermediate states are not necessarily in the s-wave

intermediate states are always in the s-wave

When an intermediate state of a PP box has s- wave and d-wave components...

$$
\begin{gathered}
q_{i} q_{j} \rightarrow \frac{1}{3} q^{2} \delta_{i j} \quad(\vec{\sigma} \cdot \vec{q})(\vec{\epsilon} \cdot \vec{q}) \rightarrow \epsilon_{i} q_{i} \sigma_{j} q_{j}=\epsilon_{i} \sigma_{j}\left\{\frac{1}{3} q^{2} \delta_{i j}+\left(q_{i} q_{j}-\frac{1}{3} q^{2} \delta_{i j}\right)\right\} \\
\text { s-wave } \\
\delta V_{P P} \rightarrow\left\{\begin{array}{l}
\delta V_{P P}^{s}=\frac{1}{3} \delta V_{P P} \\
\delta V_{P P}^{d}=\frac{2}{3} \delta V_{P P}
\end{array}\right.
\end{gathered}
$$

In the same manner, one can also decompose the the VB-PB-VB box potentials with the same

Sign of the effective transition potential

From the definition, each ingredient of the effective potential is found to be a doubled-value function.

$$
\tilde{V}_{\text {eff }}= \pm \sqrt{\frac{\delta V(P B \rightarrow V B \rightarrow P B)}{G_{V B}}} \quad \tilde{V}_{\text {eff }}^{\prime}= \pm \sqrt{\frac{\delta V^{\prime}(V B \rightarrow P B \rightarrow V B)}{G_{P B}}}
$$

Not to be cancelled out, the two signs should be taken as the same

$$
V_{\mathrm{eff}}= \pm \frac{1}{2}\left(\tilde{V}_{\mathrm{eff}}+\tilde{V}_{\mathrm{eff}}^{\prime}\right)
$$

In the case of the two coupled channels, the change of sign of the transition potentials

$$
V=\left(\begin{array}{cc}
V_{11} & \pm V_{12} \\
& V_{22}
\end{array}\right) \quad \xrightarrow{\mathrm{T}=\mathrm{V}+\mathrm{VGT}} \quad T=\left(\begin{array}{cc}
T_{11} & \pm T_{12} \\
& T_{22}
\end{array}\right) \quad T_{12}(\sqrt{s}) \sim \pm \frac{g_{1} g_{2}}{\sqrt{s}-M_{R}+i \Gamma_{R}}
$$

Energies of generated states: not depend
Relative sign of coupling constants (and wave function at the origin): depend

In the present work, we utilize the effective potentials with negative real part (as virtual pion is exchanged)

G function: dimensional regularisation vs cutoff

Real and imaginary part of the G function regularised in several ways

K. P. Khemchandani, A. Martinez Torres, H. Kaneko, H. Nagahiro and A. Hosaka, Phys. Rev. D 84, 094018 (2011)

Recalling the form of the scattering amplitude $T=V+V G T=\frac{V}{1-V G}$
Even with repulsive interactions ($\mathrm{ReV}>0$), the denominator of the amplitude can be 0

> Amplitude can have unphysical poles below the threshold: dimensional regularisation above the threshold: cut off
$\bar{D} \Lambda_{c}$ has the repulsive interaction and its threshold is below the generated states

[^0]: [1] M. Bando, T. Kugo, S. Uehara, K. Yamawaki and T. Yanagida, Phys. Rev. Lett. 54, 1215 (1985)
 [2] M. Bando, T. Kugo and K. Yamawaki, Phys. Rept. 164, 217 (1988)
 [3] U. G. Meissner, Phys. Rept. 161, 213 (1988)
 [4] K. P. Khemchandani, A. Martinez Torres, H. Kaneko, H. Nagahiro and A. Hosaka, Phys. Rev. D 84, 094018 (2011)
 [5] E. J. Garzon and E. Oset, Phys. Rev. C 91, 025201 (2015)

