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Hidden charm baryons

Nucleon resonances with negative parity are studied with the energy around 4000 - 4400 MeV as hidden
charm molecules which are formed with one anti-charmed meson and one charmed baryon
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Relevant channels: DA, DY.. D*A. D*Y. Dzz D*Zz

Within a unitary coupled channels approach, s-wave meson-baryon is considered. By the
use of the on-shell factorization, the amplitude is given by
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*the Dbar A_c channel is taken into account as an intermediate state



Hidden charm baryons

Interaction V: based on the extended local hidden gauge approach [1,2,3]
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PB-VB mixing: found to be important (even in the lighter sectors) [4,5]
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mass difference between P and V is small -> full coupled channels approach
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Vector exchange driving force

Local hidden gauge approach extended to SU(4) provides relevant vertices [0]
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P, V, B: pseudoscalar, vector, baryon fields matrix in SU(4) g= My /2f:

—Weinberg-Tomozawa (WT) interaction

(1 DY.(J =1/2), D*3.(J =1/2,3/2)
Gy Mg, + E; |[Mp, + E; B DY*(J =3/2), D*35(J =1/2,3/2,5/2)
Vi = =gqpe OVe = Mo = Me )\ e Ty, C9T 1 DAL =1/2), DA = 1/2,3)2)
. 0 oft — diagonal

- Heavy Quark Spin Symmetry (HQSS) is automatically fulfilled
- VB interaction has spin degeneracy [7]
- No off-diagonal potential

*In [6], the lighter states were found not to modify the energy and simply give ~30 MeV width to the generated states.
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PB-VB mixing

Following the local hidden gauge approach, we can have PB-VB mixing terms [8]

VPP vertices are given by the local hidden gauge: pion exchange term
Constraint of gauge invariance: contact term
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pion exchange term Kroll-Ruderman contact term
momentum dependent momentum independent
Evaluation of BB vertices : Transition including >, A,
- — D, <+ D*X,
« ™22 : negligible DY. <« D*A,
« TA:37 1 negligible — DA. <« D*X%,

e TA A,

. prohibited from the isospin conservation

Transition including >

C
DY & DUy

PB-VB mixing intermediated by a pion depends on the momentum transfer
— the box diagram

[8] E. J. Garzon and E. Oset, Eur. Phys. J. A 48, 5 (2012)
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5 box potentials

Momentum transfer g is integrated out in the following box diagrams where one pion is emitted and later
absorbed. These potentials are added to the PB driving force as momentum independent functions.
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s-wave VB intermediate states

_ — J=1/2 0V =o0Vpp +20Vep + 0Vece

— D*Ez — Dzz J=3/2 oV =oVpp +20Vep + Ve

PP box: VB intermediate states are not necessarily only in the s-wave
CP, PC, PP boxes: VB intermediate states are in the s-wave



VB-PB-VB box potentials (breaking the degeneracy)

Corrections to the VB driving force with PB intermediate states
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‘ s-wave PB intermediate states

DY, DY, — Dy, J=12 6V =6Vhp +26Vip 4 SV
D*Y. — DA, — D*%, , ,

D*A., — DY, — D*Y,  J=3/2 SV = 6Vhp

: : : J=1/2, 5/2 5V = 8Vpp

D*Y* = DY* — D

=32V =6Vpp +20Vop + Ve

PP box: VB intermediate states are not necessarily only in the s-wave
CP, PC, PP boxes: VB intermediate states are in the s-wave

— These VB box potentials resolve the spin degeneracy of the VB sectors



—ffective transition potential

In order to fully take into account the PB-VB mixing, one step further, we implement the full coupled
channels calculation by constructing the effective PB-VB transition potential [9]
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e s-wave components: used to construct the effective potentials
» d-wave (and other) components: kept in the box potentials yet

> Vg =

[9] W. H. Liang, T. Uchino, C. W. Xiao and E. Oset, Eur. Phys. J. A 51 (2015) 2, 16
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Box diagram potential - Anomalous VVP term

Anomalous VVP vertex also provides the VB-VB potential via pion exchange [10,11]
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This VB - VB potential does not interfere with the WT interaction at tree level
— These contributions are taken into account as box diagrams

Box diagram including 2. A.

V V _ _ B
W Dre = e = Do
5V . . D*%. — D*A. — D*X.
weT T D*A., — D*S. — D*X.

Sy
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Box diagram including  »*
D*Yf — D*¥F — DY
These box potentials just give extra contributions (attractions) only to VB potentials

O

*An anomalous process, like the V V P interaction, is one that does not conserve “natural” parity. The “natural” parity of a particle is defined as
follows: it is +1 if the particle transforms as a true tensor of that rank, and -1 if it transforms as a pseudotensor, e.g. 1, y, p and a4 have “natural”
parity -1, +1, +1 and -1, respectively.
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he generated states: parameters, analysis

Cutoff parameters
Three cutoff parameters, two for the G functions of PB and of VB intermediate states and one for all the box
diagrams, are used.

set I | set IT | set III
qgZ. | 600 | 800 | 1000
qV.. | 771 | 737 715
qf | 527 | 500 483

These values were chosen to reproduce two Lambda_c resonances in the previous work [9]

Analysis of the generated states
All the generated states are measured on the real axis, not in the complex energy plane

bound states

Ti5(V/s) ~ \/ggigéw — i (Vs = Mp)Ti;(Vs) = gig; ~ —* 9:Gi(Msp)
_ B S B
bound pole
resonances coupling constants wave function at the origin*
T(\/g) ~ Jid; Im7:: (M 2 gG(MR)
' Vs —Mp+il'r/2 m Ty ( R)N—Egz’g]’ v

resonance peak

“The value gG at the energy of generated states provides the wave function at the origin [12]
-> evaluate the component of the generated states in the coupled channel

[12] D. Gamermann, J. Nieves, E. Oset and E. Ruiz Arriola, Phys. Rev. D 81, 014029 (2010) 10



D*Y.(4462)

DXY.(4321)
D*A.(4295)

E

Results |: states generated by DY.. D*A,. D*X..

coupling constants and wave
functions at the origin

(4227.6,21.1) DY, D*E. D*A,
gi 4.40 5.39 0.39
9: G, 15.66 24.17 3.31
(4295.1, 10.6) DY, DY, DA,
gi 1.27 2.28 0.11

g: G; 8.46 ~12.60 2.09 + 10.04

WT+an
— 4295
’ ~ ___:::-. =§f==_____-_:
4217 e
| 4227
full PBVT) PB(WT+d-wave) full
VB(WT+an) VB(WT+an)
J=32 J=1/2

One VB bound state and two PB-VB admixture states appear

In both admixture states, VB component is stronger than PB component
Two admixture states are orthogonal: the relative sign of gG
In the coupled channel, without the transition potential, energy of the two states are very close
The mass difference between two orthogonal states is ~ 60 MeV

Two orthogonal states emerge
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D*¥*(4527)

DX*(4385)

Results II: states generated by D»* D*¥*

coupling constants and wave
functions at the origin

4324.85 Dx: D*x:
gi 3.61 4.89
g: G ~16.54 ~24.22
4378.84 DY D*%;
gi ~1.25 3.00
g;: Gl 12.30 ~17.57

lWT
WT+an
\ 4 .
y ._t\\ .
o «-""" 4374
4344 B
4320
Ul PB(WT) PB(WT+d-wave+...) Ul
VB(WT+an) VB(WT+an+d-wave)
J=1/2,5/2 J=3/2

One VB bound state and two PB-VB admixture states appear

In both admixture states, VB component is stronger than PB component
Two admixture states are orthogonal: the relative sign of gG
In the coupled channel, without the transition potential, energy of the two states are very close
The mass difference between two orthogonal states is ~ 60 MeV

Two orthogonal states emerge
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Summary

Negative parity nucleon resonances with energy 4000-4400 are studied at the
viewpoint of the hidden charm hadron molecule.
Based on the local hidden gauge approach extended to SU(4), we have the WT term
and the PB-VB mixing term. In addition, we also consider the extra VB potential from
the anomalous VVP interaction.

- The full coupled channels calculation is implemented with the effective transition
potential from the relevant parts of the PB-VB mixing term.

- Very similar results are obtained in the two sectors, one contains the spin 1/2 baryon
and the other contains the 3/2 baryons = HQSS asto 2_c and 2_c”

 One VB bound states and two PB-VB admixture states

* From the evaluation of the states with the wave function at the origin, this
two admixture states are found to be roughly orthogonal
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Summary of the numerical results

main channel J (E, ') [MeV]| | main decay channels
\%(D*EC + DY) 1/2 4228, 21(51) DA,
\%(D*ZC — DX,) 1/2 4295, 11(41) DA,
D*3. 3/2 4218, 103 DA,
D*>37 1/2, 5/2 4344, 0 —
\%(D*Zz + DY) 3/2 4325, 0 —
LS -Dz) | 32 4378, 0 -

The width in brackets is the effect of the couplings to the lighter sector

14



Thank you!



Sackup slides



—ull coupled channels I: DX. D*A. D*Y..

J=1/2: coupled channels

DS, D'S. DA, DS, DS, DA,
DY. | Vier 0 0 DY. [ oV (D*S,) + 6Va(D*A)  Vr Vs
V= D*Y., Vier 0 T | Dy, 0 0
D*A, Vv D*A, 0

Dy, D*, D*A,

Ds, | 0 0 0

T | D= SVan(D*E.) + 6Van (D*A,) 0

D*A, SVon (D*.)

d-wave box potentials are added only to PB sector

J=3/2: two single channels

| D*Y.  D*A, | D*¥. D*A,
V= D% | Vwr 0 + | D*%.| 0V (DX.) + 6V (DA,) 0
D*A. Vwr D*A. SV (DX.)
| D*¥., D*A.
+ D*Zc 5Van(D*Ec) + 5Van(D*Ac) 0
D*A, SVan(D*S,)

There is no transition between two channels -> two single channels



-ull coupled channels IIl: DX* D*¥*

J=1/2, 5/2: single channel

| Dy )

V = ( DY | Viwr

| D% | Dy
+ \ DS | sV(DE:) ) T\ DSl | 6Van(D*X)

J=3/2: coupled channels

DY* D*y* DY D*Y%¥
v= | DX | Vwr 0 + | DXL |0V (D*ED) Ve
D*¥* Vivr D*¥? 0Va(DXY)
Dx* D*%*
+ DY, 0 0
D*%* §Van (D*X*)

It is not simple to extract the s-wave component of the VB intermediate state

y OV (DX*
VeffVeff\/ SG(DE )

5‘/;&3([)*2:) — 5‘/:cotal(D*ZZ> _ ‘/GHGD*EZ ‘/eff

S-wave
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Uncertainty from the cutoff

set I | set II | set III
qo.. | 600 | 800 | 1000
qV.. | 771 | 737 715
qf | 527 | 500 483

set 1 set I | set III set I set IT | set III
peak 1 | 4241.7 | 4227.6 | 4218.6 peak | 4250.5 | 4217.7 | 4205.8
width 1 | 19.5 21.1 21.5 width | 140.8 | 103.2 | 82.0
peak 2 | 4296.8 | 4295.1 | 4294.5 — —
width 2 | 13.1 | 10.6 9.6 *J=8/2 D*>. D"A,
J=1/2 DY, D*Y. D*A,
set [ set II | set III set 1 set 11 | set III
Pole | 4354.5 | 4344.1 | 4337.5 Pole 1 | 4330.6 | 4324.9 | 4319.9
Pole 2 | 4384.1 | 4377.8 | 4374.4

J=1/2,5/2 D*X* . _
¢ J=3/2 D>’ D"’

Except the * sector, the uncertainty is ~ + 10 MeV



=xtract the s-wave component from the box
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intermediate states are
not necessarily in the s-wave

intermediate states are
always in the s-wave

When an intermediate state of a PP box has s- wave and d-wave components...

1 . . 1
qiq; — §q25¢j (0 -q) (€ q) — €iqi0;q5 = €0 {§q26ij + (qiqj -
S-wave
oVep = { SV, = 26Vep

1

3

)

In the same manner, one can also decompose the the VB-PB-VB box potentials with the same
factor, 1/3 and 3/2
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Sign of the effective transition potential

From the definition, each ingredient of the effective potential is found to be a doubled-value function.

Ve = &=

Gpp

3 \/ SV(PB - VB — PB) . \/ 5V (VB — PB — VB)
VB

Not to be cancelled out, the two signs should be taken as the same

1/~ Ny
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In the case of the two coupled channels, the change of sign of the transition potentials

Voo by Vs—Mrp+il'g

close to the pole

v ( Vit +Vig ) T=V+VG)T T ( Ty £Tho ) Tia(y/5) ~ + 9192

Energies of generated states: not depend
Relative sign of coupling constants (and wave function at the origin): depend

l

In the present work, we utilize the effective potentials with negative real part

(as virtual pion is exchanged) N



G function: dimensional regularisation vs cutoff

Real and imaginary part of the G function regularised in several ways
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K. P. Khemchandani, A. Martinez Torres, H. Kaneko, H. Nagahiro and A. Hosaka, Phys. Rev. D 84, 094018 (2011)
. . . V
Recalling the form of the scattering amplitude 7=V +VGT = v

Even with repulsive interactions (ReV > 0), the denominator of the amplitude can be O

Amplitude can have unphysical poles
below the threshold: dimensional regularisation
above the threshold: cut off

DA, has the repulsive interaction and its threshold is below the generated states
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