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ν Neutrino Mass, Mixings and 
Oscillations 

• Neutrinos oscillate because the 
flavor eigenstates, associated with 
charged-current weak interactions 
are not the mass eigenstates 
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• For two generation oscillations in vacuum: 
 
 
 Oscillations require mass differences 
 Oscillation parameters are mass-squared 

differences, δm2, and unitary mixing matrix, U. 
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Three Generations:  
Two Splittings 

• Oscillations have told us the splittings in m2, but nothing 
about the hierarchy 

• Electron neutrino potential in matter due  
to coherent forward scattering can  
resolve the sign of mass splittings 

figures courtesy B. Kayser 
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Three Generation Mixing 

• Note the new mixing in middle, and the phase, δ  
 

slide courtesy D. Harris 
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Are Two Paths Open to Us? 

• If “reactor” mixing, θ13, is small, but not too 
small, there is an exciting possibility 
 
 
 
 

• At atmospheric L/E,  

νµ 

δm23
2, θ13  

δm12
2, θ12  

νe 

2 2
2 2 2 1( )( ) sin 2 sin

4e
m m LP

Eµν ν θ
 −

→ =  
 

SMALL LARGE 

SMALL 
LARGE 



ν 

27 May 2015 K. McFarland, Neutrinoproduction of Pions 7 

Implication of two paths 

• Two amplitudes 
 
 
 

• If both small, 
but not too small, 
both can contribute ~ equally 

• Relative phase, δ, between them can lead to 
CP violation (neutrinos and anti-neutrinos differ) 
in oscillations! 
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ν Lesson from Current 
Experiments: θ13 is  HUGE 

• T2K 2011 hint  
of νμ→νe… 

 
• … dramatically confirmed by Daya 

Bay and RENO reactor experiments in 2012  
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Implications of Large θ13 

• If θ13 is large, then one of the two paths 
 
 
 
 
 
is larger than the other. 

• This implies large signals, but small CP 
asymmetries 
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Implications of Large θ13 

• Quantitative analysis to 
illustrate this expected 
behavior 
 Fractional asymmetry 

decreases as θ13 increases 

• We live here 
• Statistics are (relatively) 

high, so the challenge will 
be controlling systematic 
uncertainties. 
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ν The Oscillation Challenge 
(example, Hyper K) 

• Discovery of CP violation in neutrino 
oscillations requires seeing distortions of 
P(νμ→νe) as a function of neutrino and 
anti-neutrino energy 
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Oscillation Probabilities for L=295 km, 
Hyper-K LOI 



ν The Oscillation Challenge 
(example, at DUNE) 

• Maximum CP violation effect is range of red-blue curve 
• Backgrounds are significant, vary with energy and are 

different between neutrino and anti-neutrino beams 
• Spectral information is particularly important in wideband 

beams, but anyway all experiments need to measure Eν 
 CP effect may show up primarily as a rate decrease in one beam 

and a spectral shift in the other 
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These 
are not 
for the 
latest 
DUNE 

designs 
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Neutrino Facts of Life 
• Neutrino experiments require massive targets to 

carry out goals 
 Few 104 or 105 kg of target material of current and 

“near future” experiments 
• We only know what we see in the final state 
 Beam has wide and poorly known range of energies 

• Targets are large nuclei 
 Carbon, Oxygen, Argon, Iron are all being used in 

current or near future experiments 
• Detectors have severe limitations 
 Need to measure interactions throughout target 
 Must balance expense vs. capability 
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ν Pions that look like 
Leptons? 

• νe appearance is very sensitive 
 signal rate is low so even rare  

backgrounds contribute! 
 similar νμ problem: signal is big, 

but π± are excellent at faking μ 
• Current approach is to measure the process 

elsewhere and scale to the oscillation detector 
 But in practice, there are always corrections that have to 

come from models that describe the neutrino data 
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π0 background 
from Eν>peak 

signal 



ν Pion Energy Reconstruction 
Problem 

• Must include estimate of pion 
energy in inelastic events. 

• But produced hadrons inside the 
nuclear targets interact as they exit 
 Detector response is unlikely to be 

uniform for charged and neutral pions, 
protons and neutrons 
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• Modeling this is non-trivial and verifying the 
knowledge is even more difficult 
 Data on free nucleons is limited.  More later on this. 
 Comparing different nuclei may be helpful 
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Recent Experiments to Measure 
Interactions, e.g., Pion Production 



ν Neutrino Interaction 
Experiments are Everywhere 
• Well, at nearly at all accelerator beams for 

neutrino oscillations 
• Wide band conventional beams (νμ), both on and 

off axis 
• Near detectors (“identical” or not to far detector) 

for oscillation experiments 
 K2K, MiniBooNE, MINOS, T2K, NOvA 

• Dedicated experiments with enhanced detectors 
 NOMAD, SciBooNE, T2K, MINERvA, MicroBooNE 
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Diverse Technologies 

• Massive detectors for 
oscillation experiments 
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Diverse Technologies 
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• Fine-
grained 
detectors 
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A Selection of Features 
• Fine granularity for low thresholds and PID 
 Scintillator trackers (SciBooNE, T2K, MINERvA) 
 Thin target + open tracker in B field (NOMAD, T2K) 
 Liquid argon TPC (ArgoNeuT → MicroBooNE) 

• Cerenkov spheres for 4π acceptance 
• Multiple nuclei targets for forming flux-

independent ratios of cross-sections on nuclei 
• Off-axis beams (NOvA, T2K) are narrow band,  

although “monochromatic” is an overstatement 
• For a variety of reasons, new hydrogen or 

deuterium target experiments are difficult 
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Light Target Pion Production 
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Data on 
nucleons 

Knowledge 

The Role of Hydrogen and 
Deuterium Experiments 

• Modeling of final state interactions 
is non-trivial and verifying the 
knowledge is even more difficult 
 Without good data on free nucleons 

(H2 and D2 bubble chambers) as a 
benchmark, this is difficult 

 Comparing different nuclei is the best 
substitute we have with modern data? 

• Important note: NN final state interactions 
in D2 appear significant, e.g., J. Wu, T. Sato 
and T.-S. Lee, Phys. Rev. C91 (2015) 035203 
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Existing Deuterium Data 
• Two main datasets from H2 and D2 bubble 

chambers, “ANL” [G. Radecky et al., Phys. Rev. D25, 1161 (1982)] and 
“BNL” [T. Kitagaki et al., Phys. Rev. D34, 2554 (1986)] that 
comprehensively measure pion production 

• Results disagree by  
30-40% and this is a  
major problem in  
attempts to extract  
axial form factors 
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From O. Lalakulich and U. Mosel, , Phys. Rev. 
C87, 014612 (2013). Curves are ranges of pion 
production on D2 from GiBUU model. 



ν Resolving the Deuterium 
“Problem” 

• Both experiments had large and difficult to quantify flux 
uncertainties.  Recent observation: ratios of pion 
production to other processes are consistent. 
 Therefore can “correct” results using modern predictions of 

cross-sections, e.g., CCQE with axial form factor set by 
electroproduction of pions.  [C. Wilkinson et al, arXiV:1411.4482] 
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ν Extracting Weak Form 
Factors from Deuterium Data 
• This is a very active but also very difficult endeavor 

with limited datasets, “background” form factors 
interfering with Δ(1232), higher resonances, etc. 
 Next steps will use work on nuclear effects in deuterium, 

improved production models and resolution of “problem” 
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A selection of recent 
key references in this 

field.  Probably not 
comprehensive! 
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Data on Heavier Nuclei 



ν MINERvA Pion 
Measurements 

• MINERvA is segmented scintillator 
 Can track charged pions, protons 

o ~2cm granularity sets an energy threshold 
 Photons and electrons also show up as “tracks” 

in low density material 
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Module Number 

DATA π+ 
Event μ candidate 

p candidate 
π candidate 

μ candidate 

γ candidates 

DATA π0 
Event 



ν Charged Pion 
Reconstruction 

• Key is identification of a track as a pion by energy loss as 
a function of range from the vertex 

• Confirmed by presence of Michel electron, π→μ→e 
• Elastic or inelastic scattering in scintillator is a significant 

complication of reconstruction 
 Study uncertainties by varying pion reactions, constrained by data 
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X-view 
(plan view) 

Beam direction 
Pion tracking 

efficiency is reduced 
by secondary 
interactions 



ν Neutral Pion 
Reconstruction 

• Reaction is  
 

• Reconstruction strategy is to find 
muon and “detached” vertices 
 Photons shower slowly in plastic, 

so they look like “fat tracks” 

• Backgrounds can be 
constrained with pion mass 
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ν MINERvA: Pion Spectrum as 
Probe of Final State Effects 

• MINERvA has measured both π+ and π0 
production. Both prefer slightly softer pions than 
GENIE’s final state cascade model predicts. 
 Next steps: compare with other FSI models, i.e., GiBUU 
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MINERvA Prospects 
• MINERvA will publish (this fall) measurements of 

additional distributions, e.g., muon kinematics.  
Neutrino π0 and semi-inclusive p+π0 to follow. 

• MINERvA also has passive nuclear targets to 
allow comparison of π+ (and maybe π0) on Pb 
and Fe to CH.  Requires statistics of full dataset. 
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1” Fe / 1” Pb 
323kg / 264kg 

 

6” 500kg 
Water 1” Pb  / 1” Fe 

266kg / 323kg 

3” C / 1” Fe / 
1” Pb 

166kg / 169kg 
/ 121kg 0.3” Pb 

228kg 

.5” Fe / .5” Pb 
161kg/ 135kg 
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MiniBooNE Datasets 
• Mineral oil Cerenkov (some 

scintillation also), 4π acceptance.   
• Measured charged-current π0 and 

π+ on CH2 from ~1 GeV neutrinos. 
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A. Aguilar-Arevalo et al., Phys.Rev.D 83, 052007 (2011) 
A. Aguilar-Arevalo et al., Phys.Rev.D 83, 052009 (2011) 

 Photon acceptance and separation from μ is good 
 π/μ separation is much more difficult, but look for 

events with π+μ in final state 
• Dataset has “complete” measurements of π and 

μ kinematic distributions and derived quantities. 
  

 

νe candidate 



ν What are the Prospects for using 
this Data for Weak Form Factors? 
• Nuclear corrections need to be well understood 
 In principle, could test a variety of FSI models 

• Some authors have begun 
first steps, comparing nuclear 
models with CHn data 
[e.g., J.-Y. Yu et al, Phys. Rev. D91 (2015) 054038 
shown here.  See also Lalakulich, O. and Mosel, U.,  
Phys. Rev. C87 (2013) 014612] 

• Difficult to get all distributions to 
agree to the same model.  FSI 
problem? 
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ν MINERvA π+ comparison 
to MiniBooNE 

• Even with ~10% flux uncertainties from 
both experiments, there is ~2σ tension 
between MINERvA and MiniBooNE 

• Shape tension also 
• Note, MINERvA π+ and π0 are similar in 

rate and shape  
27 May 2015 K. McFarland, Neutrinoproduction of Pions 34 



ν Consistent with Production or 
Cascade FSI Uncertainties? 

• Interesting study  by Sobczyk and Zmuda (arXiV:1410.7788) 
asks if uncertainties in final state “cascade” models and pion 
production to explain MiniBooNE-MINERvA difference 

• Their conclusion: it cannot.  Theory uncertainties on the ratio 
are very small. 
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• Uncertainties in bins 
are highly correlated, 
so maybe explains 
high energy part? 

• And maybe low 
energy is a statistical 
fluctuation? 

• Unlucky or real? 
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First Word from T2K… 

• First results from pion production on T2K are 
arriving, though not yet published 

• Preliminary CC1π+ on H2O target 
 Total cross-section and shape maybe closer to MINERvA than 

MiniBooNE?  But need CH measurement to conclude this. 
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Prediction 
from NEUT 

PRELIMINARY PRELIMINARY 
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Coherent Pion Production 
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Coherent and Inelastic? 
• Weak boson converts to pion in 

field of nucleus 
• Gives energetic leading pion which 

is a potential lepton background in 
less capable detectors 

• Model independent features: low 
momentum transfer, |t|, to target 
and no recoil activity at vertex 
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MINERvA, 
Phys.Rev.Lett. 113 
(2014) 26, 261802 
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News on Coherent Pions 

• Recent MINERvA 
measurement shows 
predictions overestimate 
low energy pions 

• Biggest effect at low Eν 
• Explains non-

observations at K2K and 
SciBooNE? 

• Note also recent ArgoNeuT 
measurement on Ar (low statistics), 
Phys Rev. Lett 113 (2014) 261801 
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MINERvA, 
Phys.Rev.Lett. 113 
(2014) 26, 261802 
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And Again from T2K… 

• Preliminary results with same model-
independent technique as MINERvA on CH 
 Like MINERvA, cross-section is low, and maybe 

some hint of reduced low energy pions as well.  But 
need more data to make firm conclusions. 
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PRELIMINARY 
PRELIMINARY 
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Can we learn from this Data? 
• Coherent pion production is usually interpreted 

in terms of PCAC models,  
but there are microphysical  
models as well, e.g.,  
Phys.Rev. C76 (2007) 068501,  
Phys.Rev. C80 (2009) 029904  

 
 Can extract information on Δ(1232) form factors from 

low Eπ spectrum with corrections for nuclear effects? 
 In this model, primary nuclear effect is modification of 

Δ(1232) properties inside the nuclear.  No FSI per se. 
 Full statistics MINERvA data and data from liquid Argon 

experiments will both be critical for realizing this idea. 
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Summary and Prospects 
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Summary 

• Neutrino experiments need more 
information about pion production 
 Oscillation experimental ultimate precision 

relies on accurate models of this process, along 
with the effect of medium heavy nuclei 

• It may be difficult to use this data to 
untangle resonance axial current coupling 
 Hydrogen and deuterium data is limited 
 Models of nuclear effect vary 
 New ideas here are very welcome! 
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Prospects 

• Whether or not we have theory to 
accurately describe it, experiments will 
continue to measure pion production 
 More accurate results.  More distributions.  

More measurements of exclusive processes, 
particularly on Argon targets (LArTPCs) 
 Direct comparisons on different medium-heavy 

and heavy nuclei.  But not on light nuclei. 

• Need work on both “first principles” and 
“effective” models to describe new data. 
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Backup 
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Strange Mesons? 

• MINERvA and T2K are both interested in 
measuring kaon production 
 Rate of kaon+”nothing” is important for atmospheric 

neutrino backgrounds to p→K+ν  in water Cerenkov 
 Final state interactions of kaons are important for 

searches in bound protons, e.g., searches in LAr 
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(delayed track) 
MINERvA Kaon candidate and delayed track time 
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