Hadron Spectroscopy and Interactions from Lattice QCD

Robert Edwards

• Most hadrons are resonances - E.g., $\pi N \pi N$

• Most hadrons are resonances - E.g., $\pi N \pi N$

- Formally defined as a pole in a partial-wave scattering amplitude

$$t_l(s) \sim \frac{R}{s_0 - s} + \dots$$
 • $s_0 = s_0^r + s_0^i$

- Different channels should have same pole location
- Pole structure gives decay information

• Most hadrons are resonances - E.g., $\pi N \pi N$

- Formally defined as a pole in a partial-wave scattering amplitude

$$t_l(s) \sim \frac{R}{s_0 - s} + \dots$$
• $s_0 = s_0^r + s_0^i$

- Different channels should have same pole location
- Pole structure gives decay information
- Can we predict hadron properties from first principles?

expand angular dependence in *partial waves*

PARTIAL WAVE AMPLITUDE

$$f_{\ell} = \frac{1}{2i} \left(\eta_{\ell} e^{2i\delta_{\ell}} - 1 \right)$$

 $\eta = 1$ elastic $\eta \leq 1$ inelastic

Finite-volume

- Where's the meson-meson continuum ?
 - there isn't one !

Finite-volume

- Where's the meson-meson continuum ?
 - there isn't one !
 - in a finite-volume the spectrum is discrete

Finite-volume

- Where's the meson-meson continuum ?
 - there isn't one !
 - in a finite-volume the spectrum is discrete

• Two identical bosons **interacting** through a finite-range potential

 $\psi(z) \sim \cos\left[p|z| + \delta(p)\right]$

• Two identical bosons interacting through a finite-range potential

 $\psi(z) \sim \cos\left[p|z| + \delta(p)\right]$

• Two identical bosons **interacting** through a finite-range potential

 $\psi(z) \sim \cos\left[p|z| + \delta(p)\right]$

periodic boundary conditions

$$\psi\left(-\frac{L}{2}\right) = \psi\left(\frac{L}{2}\right) \\ \frac{d\psi}{dz}\left(-\frac{L}{2}\right) = \frac{d\psi}{dz}\left(\frac{L}{2}\right)$$

$$\} \implies 0 = \sin\left[\frac{pL}{2} + \delta(p)\right] \\ \frac{pL}{2} + \delta(p) = n\pi$$

• Two identical bosons **interacting** through a finite-range potential

 $\psi(z) \sim \cos\left[p|z| + \delta(p)\right]$

- periodic boundary conditions

$$\psi\left(-\frac{L}{2}\right) = \psi\left(\frac{L}{2}\right) \\ \frac{d\psi}{dz}\left(-\frac{L}{2}\right) = \frac{d\psi}{dz}\left(\frac{L}{2}\right)$$
 $\} \implies 0 = \sin\left[\frac{pL}{2} + \delta(p)\right]$
$$\frac{pL}{2} + \delta(p) = n\pi$$

$$\psi(z > 0) \sim e^{-ipz} + e^{2i\delta(p)} \cdot e^{ipz}$$

$$V(z) \longrightarrow e^{ipz}$$

$$e^{ipz}$$

$$e^{-ipz}$$

$$p = \frac{2\pi}{L}n - \frac{2}{L}\delta(p) \begin{array}{l} \text{discrete} \\ \text{energy} \\ \text{spectrum} \end{array}$$

• Two identical bosons **interacting** through a finite-range potential

 $\psi(z) \sim \cos\left[p|z| + \delta(p)\right]$

periodic boundary conditions

$$\psi\left(-\frac{L}{2}\right) = \psi\left(\frac{L}{2}\right)$$

$$\frac{d\psi}{dz}\left(-\frac{L}{2}\right) = \frac{d\psi}{dz}\left(\frac{L}{2}\right)$$

$$\Rightarrow 0 = \sin\left[\frac{pL}{2} + \delta(p)\right]$$

$$\frac{pL}{2} + \delta(p) = n\pi$$

$$2\pi$$

outside the range |z| > R of the potential,

$$\psi(z > 0) \sim e^{-ipz} + e^{2i\delta(p)} \cdot e^{ipz}$$

$$V(z) \longrightarrow e^{ipz}$$

$$e^{ipz}$$

$$e^{-ipz}$$

$$p = \frac{2\pi}{L}n - \frac{2}{L}\delta(p) \quad \begin{array}{l} \text{discrete} \\ \text{energy} \\ \text{spectrum} \end{array}$$

discrete energy spectrum is determined by the scattering amplitude

(or vice-versa)

Scattering in a finite cubic volume

• Expect a discrete spectrum in a finite periodic volume e.g. free particle $e^{ip(x+L)} = e^{ipx}$ quantized momentum $p = \frac{2\pi}{L}n$

• For an interacting theory

$$\cot \delta_{\ell}(E) = \mathcal{M}_{\ell}(E,L)$$

Lüscher ...

elastic scattering phase-shift

known function

Scattering in a finite cubic volume

• Experimental $\pi\pi$ *I*=1 *P*-wave scattering amplitude

Coupled-channel scattering

• Finite-volume formalism recently derived (multiple methods)

HE, JHEP 0507 011 HANSEN, PRD86 016007 BRICENO, PRD88 094507 GUO, PRD88 014051

$$\det\left[\left(\left[t^{(\ell)}(E)\right]_{ij}^{-1} + i\rho_i(E)\,\delta_{ij}\right) - \delta_{ij}\,\mathcal{M}_\ell(p_i(E)L)\right] = 0$$

matrix

phase space

known functions

matrices in partial-wave space ..

• However, this is one equation for multiple unknowns (per energy level) $\frac{1}{2}N(N+1)$ for *N* channels

- parameterize the energy dependence of t
- try to describe a spectrum globally

"Energy-dependent" analysis

Finite volume QCD & the hadron spectrum

• Compute correlation functions as an average over field configurations

e.g.
$$\int \mathcal{D}\psi \mathcal{D}\bar{\psi}\mathcal{D}A_{\mu} \ \bar{\psi}\Gamma\psi(t) \ \bar{\psi}\Gamma\psi(0) \ e^{-\int d^{4}x \mathcal{L}_{QCD}(\psi,\bar{\psi},A_{\mu})}$$

'sum' 'field correlation' 'probability weight'

Field integration within a finite, but continuous, hypercube Need some kind of ultraviolet regulator....

• Spectrum from two-point correlation functions

$$C(t) = \langle 0 | \mathcal{O}(t) \ \mathcal{O}^{\dagger}(0) | 0 \rangle$$

= $\sum_{\mathfrak{n}} e^{-E(\mathfrak{n})t} \langle 0 | \mathcal{O}(0) | \mathfrak{n} \rangle \langle \mathfrak{n} | \mathcal{O}^{\dagger}(0) | 0 \rangle$

Lattice QCD & the hadron spectrum

• Compute correlation functions as a Monte Carlo average over field configurations

e.g. $\int \mathcal{D}\psi \mathcal{D}\bar{\psi}\mathcal{D}A_{\mu} \ \bar{\psi}\Gamma\psi(t) \ \bar{\psi}\Gamma\psi(0) \ e^{-\int d^{4}x \mathcal{L}_{QCD}(\psi,\bar{\psi},A_{\mu})}$ 'sum' 'field correlation' 'probability weight'

Discretize the action over sites Serves as an ultraviolet regulator

• Spectrum from two-point correlation functions

$$C(t) = \langle 0 | \mathcal{O}(t) \ \mathcal{O}^{\dagger}(0) | 0 \rangle$$

= $\sum_{\mathfrak{n}} e^{-E(\mathfrak{n})t} \langle 0 | \mathcal{O}(0) | \mathfrak{n} \rangle \langle \mathfrak{n} | \mathcal{O}^{\dagger}(0) | 0 \rangle$

Excited states from correlators

• how to get at excited QCD eigenstates ?

– optimal operator for state
$$\ket{\mathfrak{n}}$$
 : $\Omega^{\dagger}_{\mathfrak{n}} \sim \sum_{i} v_{i}^{(\mathfrak{n})} \mathcal{O}_{i}^{\dagger}$

for a basis of meson operators $\{\mathcal{O}_i\}$

- can be obtained (in a variational sense) from the matrix of correlators

$$C_{ij}(t) = \langle 0 | \mathcal{O}_i(t) \, \mathcal{O}_j^{\dagger}(0) | 0 \rangle$$

- by solving a generalized eigenvalue problem

$$C(t)v^{(\mathfrak{n})} = C(t_0)v^{(\mathfrak{n})}\lambda_{\mathfrak{n}}(t)$$

'diagonalize the correlation matrix'

eigenvalues
$$\lambda_{\mathfrak{n}}(t) \sim e^{-E_{\mathfrak{n}}(t-t_0)}$$

- a large basis can be constructed using covariant derivatives :

$$\mathcal{O} \sim \bar{\psi} \Gamma \overleftrightarrow{D} \dots \overleftrightarrow{D} \psi$$

Including multi-meson operators

- form correlator matrix with both $ar{\psi} {f \Gamma} \psi$ and $\pi \pi$ -like
- include operators which resemble a pair of pions

$$\sum_{\hat{k}_1, \hat{k}_2} C(\Lambda, \vec{P}; \vec{k}_1, \vec{k}_2) \pi^{\dagger}(\vec{k}_1) \pi^{\dagger}(\vec{k}_2) \\ \pi^{\dagger} \sim \bar{\psi} \Gamma \psi$$

Finite-volume spectrum - moving frames

ρ resonance

$\pi K/\eta K$ scattering & kaon resonances

• Example of coupled-channel scattering

 $\pi K = \begin{bmatrix} \pi K & \pi K \end{bmatrix} = \eta K$ $\eta K = \begin{bmatrix} \pi K & \eta K \end{bmatrix} = \pi K$

• Compute finite-volume spectrum

```
\bar{u}\Gamma s
```

$$\sum_{\hat{k}_1, \hat{k}_2} C(\Lambda, \vec{P}; \vec{k}_1, \vec{k}_2) \pi^{\dagger}(\vec{k}_1) K^{\dagger}(\vec{k}_2)$$
$$\sum_{\hat{k}_1, \hat{k}_2} C(\Lambda, \vec{P}; \vec{k}_1, \vec{k}_2) \eta^{\dagger}(\vec{k}_1) K^{\dagger}(\vec{k}_2)$$

PRL 113 182001 PRD 91 054008

$\pi K/\eta K$ scattering & kaon resonances

• Example of coupled-channel scattering

$$\pi K = \pi K \quad \pi K = \eta K$$
$$\eta K = \pi K \quad \eta K = \eta K$$

• Compute finite-volume spectrum

 $\bar{u}\Gamma s$

 $\sum_{\hat{k}_1, \hat{k}_2} C(\Lambda, \vec{P}; \vec{k}_1, \vec{k}_2) \pi^{\dagger}(\vec{k}_1) K^{\dagger}(\vec{k}_2)$ $\sum_{\hat{k}_1, \hat{k}_2} C(\Lambda, \vec{P}; \vec{k}_1, \vec{k}_2) \eta^{\dagger}(\vec{k}_1) K^{\dagger}(\vec{k}_2)$

PRL 113 182001 PRD 91 054008

$\pi K/\eta K$ scattering & kaon resonances

• Parameterize the *t*-matrix in a unitarity conserving way

$$\pi K = \pi K \quad \pi K = \eta K$$
$$\eta K = \pi K \quad \eta K = \eta K$$
$$t_{ij}^{-1}(E) = K_{ij}^{-1}(E) + \delta_{ij} I_i(E)$$
$$K_{ij}(E) = \frac{g_i g_j}{m^2 - E^2} + \gamma_{ij}$$

- Vary the parameters, solving

$$\det\left[\left(\left[t^{(\ell)}(E)\right]_{ij}^{-1}+i\rho_i(E)\,\delta_{ij}\right)-\delta_{ij}\,\mathcal{M}_\ell(E,L)\right]=0$$

for the spectrum in each irreducible representation & momentum

Want pole mass and couplings of t-matrix

Model description $\chi^2 / N_{dof} = \frac{6.40}{15 - 6} = 0.71$

NSTAR 2015

Model description $\chi^2 / N_{dof} = \frac{6.40}{15 - 6} = 0.71$

Model description $\chi^2 / N_{dof} = \frac{6.40}{15 - 6} = 0.71$

NSTAR 2015

• Describe all the finite-volume spectra

$$\chi^2 / N_{\rm dof} = \frac{49.1}{61-6} = 0.89$$

 $m_{\pi} \sim 391 \,\mathrm{MeV}$

Jefferson Lab

Versus experimental scattering

• Are the result parameterization dependent ?

S-WAVE $\pi K/\eta K$ SCATTERING

 $m_{\pi} \sim 391 \,\mathrm{MeV}$

- gross features are robust

• Clear narrow resonance in D-wave scattering

Singularity content

• *t*-matrix poles as least model-dependent characterization of resonances

Scattering with external currents ?

- E.g. $\pi \gamma \rightarrow \pi \pi$ in *P*-wave : the ρ appears as a resonance
 - The observables are the amplitudes $A_\ell(E_{\pi\pi},Q^2)$

 $ho \rightarrow \pi \gamma$ form-factor defined at the ho-pole $A_1(s \rightarrow s_{
ho}) \sim \frac{c_{
ho}\pi\pi c_{
ho}\pi\gamma(Q^2)}{s - s_{
ho}}$

- Initial determination of spectrum with only *qqq* style operators *PRD 84 & 85*
 - See rich spectrum, including hybrid-like states

Jefferson Lab

- Initial determination of spectrum with only qqq style operators PRD 84 & 85
 - See rich spectrum, including hybrid-like states
 - However, no operators that look like πN or $\pi \pi N$ missing scattering states

Jefferson Lab

- Initial determination of spectrum with only qqq style operators PRD 84 & 85
 - See rich spectrum, including hybrid-like states
 - However, no operators that look like πN or $\pi \pi N$ missing scattering states
 - Some initial results in S11 have appeared

GRAZ GROUP

Jefferson Lab

- Initial determination of spectrum with only qqq style operators PRD 84 & 85
 - See rich spectrum, including hybrid-like states
 - However, no operators that look like πN or $\pi \pi N$ missing scattering states
 - Some initial results in S11 have appeared
- Development of three-body formalism required

HANSEN & SHARPE - MUCH PROGRESS

GRAZ GROUP

Hadron Spectrum Collaboration

IFFFFRSON LAB TRINIT		TY COLLEGE DUBLIN		CAMBRIDGE LINIVERSITY	
JLIILKJUN LAD					
Jozef Dudek Robert Edwards		Mike Peardon Sinead Ryan		Christopher Thomas	
David Richards Frank Winter	TA	TA, MUMBAI		U. OF MARYLAND Steve Wallace	
	N	ilmani Mathur			
				& postdocs, students	
				,	-
MESON SPECTRUM		BARYON SPECTRUM		HADRON SCATTERING	
PRL103 262001 (2009) $I = 1$ PRD82 034508 (2010) $I = 1, K^*$ PRD83 111502 (2011) $I = 0$ JHEP07 126 (2011) $c\bar{c}$ PRD88 094505 (2013) $I = 0$ JHEP05 021 (2013) D, D_s		PRD84 074508 (201 PRD85 054016 (201 PRD87 054506 (201 PRD90 074504 (201 arXiv:1502.01845	1) $(N, \Delta)^{*}$ 2) $(N, \Delta)_{hyb}$ 3) $(N \dots \Xi)^{*}$ 4) Ω_{ccc}^{*} Ξ_{cc}^{*}	PRD83 071504 (2011) PRD86 034031 (2012) PRD87 034505 (2013) PRL113 182001 (2014) PRD91 054008 (2015)	$\pi \pi I = 2$ $\pi \pi I = 2$ $\pi \pi I = 1, \rho$ $\pi K, \eta K$ $\pi K, \eta K$
		"TECHNOLOGY"		MATRIX ELEM	ENTS
		PRD79 034502 (2009 PRD80 054506 (2009 PRD85 014507 (2012) lattices) distillation) $\vec{p} > 0$	arXiv:1501.07457 PRD90 014511 (2014)	$M' o \gamma M \ f_{\pi^{\star}}$

Summary

- LQCD spectroscopy program maturing. First phase:
 - With only "single-hadron" operators obtain sketch of hadron spectrum
 - Suggests rich spectrum of mesons & baryons exotic & non-exotic hybrids

Summary

- LQCD spectroscopy program maturing. First phase:
 - With only "single-hadron" operators obtain sketch of hadron spectrum
 - Suggests rich spectrum of mesons & baryons exotic & non-exotic hybrids
- Goal is to compute resonance information decays & branching fractions
 - Including multi-hadron operators leads to richer spectrum
 - Demonstrated viability of finite-volume methods
 - Work underway at lower pion masses (230 MeV)
 - S-matrix formalism increasingly important

E.G., JOINT-PHYSICS ANALYSIS CENTER

Summary

- LQCD spectroscopy program maturing. First phase:
 - With only "single-hadron" operators obtain sketch of hadron spectrum
 - Suggests rich spectrum of mesons & baryons exotic & non-exotic hybrids
- Goal is to compute resonance information decays & branching fractions
 - Including multi-hadron operators leads to richer spectrum
 - Demonstrated viability of finite-volume methods
 - Work underway at lower pion masses (230 MeV)
 - S-matrix formalism increasingly important

E.G., JOINT-PHYSICS ANALYSIS CENTER

- Ultimately, determine underlying structure
 - Resonance scattering with external currents

SHULTZ 2015 BRICENO & HANSEN 2015

- Both vacuum overlaps ("wave-function") & transition form-factors

