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2. Some applications to resonance and bound state systems.

1. Calculation method of the scattering phase shift  
                                                               by Lattice QCD. 



1. Introduction
Recent progress of simulation algorithm,  
supported by the development of computer power, 
makes it possible to calculate the hadron masses at physical quark mass by lattice QCD. 
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FIG. 11: π, ρ and nucleon masses as a function of the number of noise.
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FIG. 12: Hadron masses normalized by mΩ in comparison with experimental values. Target result for ρ meson locates below
the figure.

Hadron masses at physical quark mass
PACS-CS  Phys.Rev.D81:074503,2010. for unstable particle ( ρ , K* , Δ )

energies of ground states
on finite volume are plotted.

( : not resonance masses ) 

But, it is only for stable particles ......

These can be carried out 
by analysis of the scattering phase shift. 

: important for understanding properties of hadrons

Calculations of resonance mass
and decay width of unstable particles
at physical quark mass still remain.

Scattering phase shift  
    =>  Information of Hadron interaction 
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for ρ meson

3

Correlation function of resonance 
                                on the lattice

:  multi exp. form with  E� � R

( : same form as for stable particle )

2mπ

mρ

finite volume

discrete

infinite volume

continuous
+ discrete(2nd sheet)

ππ ρ

time correlator

 :  This is only true  
       in infinite volume  !

naive expectation :

⇥ e�Mt · e�i�t

for unstable particle

E = M + i� ( M,� 2 R )

Decay width can not be directly obtained
from correlation function on the lattice. 

�0| ⇥†(t) ⇥(0) |0⇥ =
X

�

|�0|⇥|�⇥|2 · e�E↵t

⇢ = ū�ju� d̄�jd



Energy of π :

Energy of ππ :

In                       periodic box ( : lattice )L� L� L

M. Lüscher , CMP105(86)153, NPB354(91)531.

( : discrete )

Calculation of scattering phase shift [ Finite size method ]

Ex)  for ππ  S-wave

Energy of system
on the lattice

SC. phase shift
in infinite volume=� =� Informations of 

hadron interaction

:  SC. phase shift in infinite volume

:  Lüscher’s finite size formula

( q = 2⇡/L · p )
p · cot �(p) = 2p

⇡L
· 1p

4⇡

X

n2Z3

1

n2 � q2

E =
p

m2
⇡ + p2

E = 2
p
m2

⇡ + p2

p2 = (2⇡/L)2 · n , n 2 Z

p2 = (2⇡/L)2 · n , n 62 Z
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�(p)

( extension to other system is straight forward ) 



Other methods 

2. From spectrum density

1.  From time correlation function

: strongly relies on effective theory.

Extraction the resonance parameter 
   by fitting the time correlation function on the lattice
   to effective theories. 

3. From “potential” extracted from BS-function

recently : model independent method at L = huge
U.-G. Meissner et al., NPB846(2011)1.

V. Bernard et al.,  JHEP 08(2008) 024.

Calculations on many lattice volumes.
Extracting energies of very higher states. : very difficult in QCD !! 

HAL coll., PRL99(2007)02201, PTP123(2010)89.

5

Wave function calculated on the lattice.
=>  extracting “potential” 
=>  solving Schrödinger eq.   => SC. phase shift.

: very difficult in QCD !! 
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4. Summary

[ finite size method and HAL potential method ]

( D +K , S-wave , bound state )

D1 (2420, 2430) ( D⇤
+ ⇡ , S-wave , resonace )
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2. Finite size formula

L

2 × Rassumption : interaction range : R < L/2

p.BC. : �(x + nL) = �(x) for n � Z3

energy eigenstate with

for R < |x| < L/2

Wave function on the lattice :  

( pn = n · (2�)/L )

E = 2
p
m2

⇡ + p2

�(x) =
X

n2Z3

eipn·x

p2n � p2

( S-wave ππ  for               )E < 4m⇡

�(x) = h0| ⇡(x/2) ⇡(�x/2) |Ei

= ↵0(p) · j0(px) + �0(p) · n0(px) +
n

jl(px) ; l � 1
o

( q = 2⇡/L · p )

:  Lüscher’s finite size formula

p · cot �(p) = p
↵0(p)

�0(p)
=

2p
⇡L

· 1p
4⇡

X

n2Z3

1

n2 � q2

·

·

solution : 
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( extension to other system is straight forward ) 

( for                                ) �l(p) = 0 for l � 1



in case of strong attractive int.

Energy of ground state : 

at fixed volume 

�E = E � Efree
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( L/a = 24 )

attractive
repulsive

|�E| / 1/V

�E < 0
�E > 0
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cot � = i

(pa) cot � < 0

⇠ �|pa|

(pa) · cot �(p) (pa) · cot �(p)

E�1 = EB + e�L



Extension of finite size formula
elastic SC. ·

K. Rummukainen and S.A.Gottlieb, NPB450(1995)397.
X. Feng, K. Jansen, D. Renner, PoS(Lat2010)104.

J.J. Dudek, R.G. Edward, C.E. Thomas, RD86(2012)034031.

Z.Fu, PRD85(2012)014506.

L.Leskovec and S. Prelovsek, PRD85(2012)114507.

M.Göckeler et al, PRD86(2012)094513.

M.Döring et al, EPJA48(2012)114.
N.Li and C.Liu, PRD87(2013)114507.

multi SC. state·

C. Liu, X. Feng, S. He, Int.J.Mod.Phys. A21(2006)847.

M. Lang. et.al., PLB681(09)439.

(ex ππ + KK for I=0 )

· three particles ( spin less )
M. Hansen and S.R. Sharpe, PRD90(2014)116003.
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HSC coll., PRL113(2014)182001; PRD91(2015)054008. 



Extraction of energy of excited state
O(t) : op. with some quantum number 

In principle,        of excited stats can be extracted by multi exponential fitting. En

But it is practically very difficult. 

Oi (i = 1, 2, · · ·N) : ops. with some quantum number 

G(t) = h0| O†(t)O(t0) |0i =
X

n

An · e�En·(t�t0)

assuming the lowest N states dominate correlation function.

so,
Vnj = hn|Oj |0i �n(t) = exp(�Ent),

=
N�1X

n=0

V †
in · �n(t� t0) · Vnj

Gij(t) = h0| O†
i (t)Oj(t0) |0i

We can extract    En by single exponential fitting.  

M. Lüscher and U. Wolff, NPB339(1990)222.: Variational method 

=
h
V † · �(t� t0) · V

i

ij
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for t >> t0

for t >> t0

h
G(tR)

�1G(t)
i

n-th eigenvalue
= �n(t� tR)



ex)  ρ meson

ex) 

O⇡⇡(p) = ⇡+(p)⇡�(�p)� ⇡+(�p)⇡�(p)

( I = 0 , JP = 0+ )

ODK(p) = D+(p)K�(�p) +D�(p)K+(�p)

M = s̄c

⇢j = ū�ju� d̄�jd·

·

·

·

( bound state ) 

( I = 1 , JPC = 1�� )
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3. Recent progress
(1)  Scattering length of I=2 S-wave ππ 

Hadronic Interactions Takeshi Yamazaki

estimated using the low energy constants extracted from d (p) at mp = 390 MeV with NLO ChPT
formula for the scattering amplitude, while they use the value of fp calculated with different action.

The lattice results are compared with the phenomenological determination, marked “CGL”,
obtained with NNLO ChPT [35] and the experimental results [32, 31] with and without ChPT
constraint. Since in ChPT the scattering lengths for the I = 0 and 2 channels share a common low
energy constant, the error becomes smaller in the case with the constraint. Some lattice results have
smaller error, even if including the systematic error, than the phenomenological determination and
the experimental results. Therefore, a0 calculation in the I = 2 two-pion channel enters precision
measurement era, where lattice result will be confirmed by experiment. In this conference, prelim-
inary result of Nf = 2+1+1 twisted mass quark calculation [36] is reported, which will calculate
more precise value of a0 at the physical mp .
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Figure 1: Left panel: a0 in the I = 2 two-pion channel calculated in full lattice QCD as a function of mp/ fp ,
together with the prediction of LO ChPT (dashed curve). Right panel: values at physical mp . Circle, up
triangle, left triangle, down triangle, and square symbols denote results obtained with clover, domain wall,
twisted mass, overlap, and improved staggered quark actions for valence quark, respectively. MA and PQ
express mixed action with asqtad sea quark and partially quenched calculation. The experimental result by
E865 [31] and NA48/2 [32], and the phenomenological determination using NNLO ChPT [35] (denoted by
CGL in the right panel) are also shown.

3.2 I = 1/2 Kp channel

The S-wave scattering in the I = 1/2 Kp channel is more complicated than the I = 2 two-
pion channel; it is in fact much more interesting because of the expected presence of k meson
from phenomenology in this channel. In the region of heavy quark mass, k meson is indeed a
bound state and so has to be taken into account in the a0 calculation of Kp scattering [30]. In
the case, one needs to calculate the first excited state in the system to evaluate a0. Furthermore,
for the calculation of Kp correlation function, we need to include the rectangular diagram, for
which specific calculation methods are required, for example the stochastic LapH method [37] or
the trapezoid diagram calculation method [38].

Due to these difficulties, there have been only four studies in the I = 1/2 Kp channel; Nf = 0
calculation by Nagata et al. [39], partially quenched Nf = 2 + 1 by Fu [40], Nf = 2 by Lang et
al. [41], and Nf = 2+1 by PACS-CS Collaboration [30]. The left panel of Fig. 2 shows the result
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Talk by Yamazaki at Lat.2015 ( PoS(Lattice2015)009 )

: LO CHPT with  

all results are on LO CHPT with 
and consistent with expt. 12

line = �m2
⇡/(8⇡f

2
⇡(m⇡))



(2)  ρ meson decay  ( I=1 P-wave ππ )

Hadronic Interactions Takeshi Yamazaki

are reported as shown in Fig. 4. Fahy et al. [52] obtain the result at mp = 240 MeV, and BMW
Collaboration obtain the results in mp = 134–300 MeV [53].

Figure 3: I = 1 pp phase shift calculated by Hadron Spectrum Collaboration [51].
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Figure 4: Resonance mass mr (left panel) and the coupling gppr (right panel) obtained in various calcula-
tions. Open circle is result with lattice dispersion relation [47].

4.2 Other decay channels

In the P-wave I = 1/2 channel, the K⇤ meson decays to the Kp final state. This is an ideal
decay process as in the r meson decay; there are only Kp scattering and K⇤ state in the energy
region below the resonance. There have been three lattice calculations of d (p) in this channel, by
Fu and Fu [54] in Nf = 2 + 1 QCD, Prelovsek et al. [55] in Nf = 2 QCD, and Hadron Spectrum
Collaboration [56, 45] in Nf = 2+1 QCD. The last one is reported in this conference, and reviewed
by other plenary speakers [13, 14]. A difficulty of the lattice calculation in this channel is mixing
of even and odd partial wave contributions in moving frame [8, 9, 10, 11, 12] due to mp 6= mK .
Some methods to solve the difficulty were proposed in Refs. [57, 55, 45].

In Ref. [54] it is assumed that S-wave contribution is negligible, so that the result contains sys-
tematic errors from the mixing. Prelovsek et al. [55] obtain a value consistent with the experiment,
gpKK⇤ = 5.7(1.6), at mp = 270 MeV. Hadron Spectrum Collaboration [56, 45] calculate d (p) at
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are reported as shown in Fig. 4. Fahy et al. [52] obtain the result at mp = 240 MeV, and BMW
Collaboration obtain the results in mp = 134–300 MeV [53].
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4.2 Other decay channels

In the P-wave I = 1/2 channel, the K⇤ meson decays to the Kp final state. This is an ideal
decay process as in the r meson decay; there are only Kp scattering and K⇤ state in the energy
region below the resonance. There have been three lattice calculations of d (p) in this channel, by
Fu and Fu [54] in Nf = 2 + 1 QCD, Prelovsek et al. [55] in Nf = 2 QCD, and Hadron Spectrum
Collaboration [56, 45] in Nf = 2+1 QCD. The last one is reported in this conference, and reviewed
by other plenary speakers [13, 14]. A difficulty of the lattice calculation in this channel is mixing
of even and odd partial wave contributions in moving frame [8, 9, 10, 11, 12] due to mp 6= mK .
Some methods to solve the difficulty were proposed in Refs. [57, 55, 45].

In Ref. [54] it is assumed that S-wave contribution is negligible, so that the result contains sys-
tematic errors from the mixing. Prelovsek et al. [55] obtain a value consistent with the experiment,
gpKK⇤ = 5.7(1.6), at mp = 270 MeV. Hadron Spectrum Collaboration [56, 45] calculate d (p) at
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HSC coll.,. PRD87(2013)034505. almost consistent with expt.

Talk by Yamazaki at Lat.2015 ( PoS(Lattice2015)009 )
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(3) 

expectation form heavy quark sym. :

 : S-wave decay [ broad ]
jPu = 3/2+ , jP = ( 1+ , 2+ ) = (D1(2420) , D

⇤
2(2460) ) : D-wave decay [ narrow ]

jPu = 1/2� , jP = ( 0� , 1� ) = (D(1864) , D⇤(2010) )

jPu = 1/2+ , jP = ( 0+ , 1+ ) = (D⇤
0(2400) , D1(2430) )

D. Mohler, S. Prelovsek, R.M. Woloshyn, PRD87(2013)034501. 
2

the two observed broad states D∗
0(2400) and D1(2430)

as resonances, so we simulate Dπ and D∗π scattering
and extract the corresponding phase shifts for the first
time. A Breit-Wigner fit then allows us to extract the
D∗

0(2400) resonance mass and width, and analogously for
the D1(2430) within a phenomenologically motivated ap-
proximation described in Section IV. The remaining four
members of the 1S and 1P multiplets are stable or narrow
in experiment. They are expected to be stable or very
narrow also in our lattice simulation where D1(2420) and
D2(2460) lie below D-wave decay threshold. We equate
the masses of these states directly to the quark-antiquark
energy levels on the lattice, as in all lattice simulations
up to now. In addition, the masses of the ground and
excited states in channels with JP = 0−, 1−, 2± are ex-
tracted. Some of these correspond to the still poorly
known orbital and radial D meson excitations.
The Dπ scattering in the I = 1/2 channel has been ad-

dressed on the lattice only indirectly by simulating the
scalar semileptonic D → π form factor f0 [12]. Various
scattering channels in the charm sector were simulated
in [13], but the attractive I = 1/2 scattering Dπ or D∗π
has not been directly simulated yet. While the scatter-
ing lengths can not be measured, their calculation is of
theoretical interest and we calculate the Dπ and D∗π
scattering lengths on the lattice which can be compared
to other types of calculations [11, 12, 14–17].
The present study of charm-light spectroscopy requires

good control over heavy-quark discretization effects, as
for example provided by the Fermilab method [18]. In [8]
the spectrum of low-lying charmonium states was used to
validate the approach. Motivated by these results on the
low-lying charmonium spectrum a large number of non-
exotic charmonium states up to spin 3 are studied in the
present work.

The present paper is organized as follows. Section II
outlines the calculational setup. Details about the gauge
configurations, the calculation of quark propagators and
the determination of the charm quark hopping parame-
ter κc are discussed. Section III presents results for the
spectrum of low-lying charmonium states. Encouraged
by these results, we simulate Dπ and D∗π scattering in
Section IV and extract information on scalar and axial
resonances. For completeness some results with regular
quark-antiquark (qq̄) interpolators in other JP channels
are presented. Section V contains a summary and dis-
cussion. Tables of lattice interpolating fields as well as
details about fits and fit results are included in the ap-
pendix.

II. CALCULATIONAL SETUP

Gauge field configurations were generated with nf =2
flavors of tree level improved Wilson-Clover fermions
[19, 20]. The gauge links in the action have been smeared
using normalized hypercubic (nHYP) smearing [21] with
parameters (α1,α2,α3) = (0.75, 0.6, 0.3). In these simu-

N3
L ×NT κl β a[fm] L[fm] #configs mπ[MeV]

163 × 32 0.1283 7.1 0.1239(13) 1.98 280/279 266(3)(3)

TABLE I. Details of Nf = 2 gauge configurations: NL and
NT denote the number of lattice points in spatial and time di-
rections. The first error on mπ is statistical while the second
error is from the determination of the lattice scale. Observ-
ables are based on 279 or 280 configurations. For details see
[22].

lations the gauge fields have been generated with periodic
boundary conditions and the fermion fields obey periodic
boundary conditions in space and anti-periodic boundary
conditions in time. The same configurations were used
previously in a coupled channel analysis of the ρ meson
[22] and in a study of Kπ-scattering [23]. Table I lists
some further details about the gauge configurations. For
the determination of the lattice spacing a and the strange
quark hopping parameter κs please refer to [22] and [23],
respectively.
To calculate the quark propagation the dfl sap gcr

inverter from Lüscher’s DD-HMC package [24, 25] is
used for the light and strange quarks and the same in-
verter without low mode deflation is used for the charm
quarks. Our final propagators are build from combi-
nations of quark propagators with periodic and anti-
periodic boundary conditions in time [26, 27]. For more
details on these so-called “P+A” propagators see [22].

A. Distillation using Laplacian Heaviside smearing

For an efficient calculation of the quark propagation
and flexibility in constructing correlation functions we
use the distillation method, first proposed by Peardon et

al. in [28]. In this method smeared quark sources and
sinks are constructed using a number of low modes of
the 3D lattice Laplacian ∇2. For an N × N matrix A
with eigenvalues λ(k) and eigenvectors v(k) one has the
spectral decomposition

f(A) =
N
∑

k=1

f(λ(k)) v(k)v(k)†. (1)

As in [22, 23, 28], the Laplacian-Heaviside (LapH) smear-
ing with f(∇2) = Θ(σ2

s + ∇2) is employed , so the
smeared quark fields qs are

qs ≡
N
∑

k=1

Θ(σ2
s + λ(k))v(k)v(k)† q =

Nv
∑

k=1

v(k)v(k)† q ,

(2)

where Nv depends on the target smearing σs. For this
study we choose Nv = 96 or Nv = 64, depending on the
lattice interpolating fields listed in the following Sections.
The low mode eigenvectors and eigenvalues are calculated
using the PRIMME package [29].

D⇤
0 (2400) and D1(2420, 2430)

D⇤
0(2400) by lattice QCD  and

14

( in heavy charm limit )

neutral D meson : D = c̄�u

D(1864) �5
JP

0�
�

stable
D⇤(2010) 1� �j

D⇤
0(2400) I0+

D⇡ , � = 96KeV

D1(2420)

D1(2430)

�j�5

�j�5

1+

1+

D⇤⇡ , � = 27MeV

D⇤⇡ , � = 384MeV

D⇡ , � = 267MeV

total angular mom. : J = ju + sc
ju

sc

: total angular mom. of u quark
: spin of c quark

in heavy charm limit,
ju is good quantum number.
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level n interpolators t0 fit range type Ena χ2/d.o.f ap∗ sa2 δ0

1 1,3,5,6 3 4-21 2 exp 1.1145(25) 3.39/13 0.0939(34)i 1.2420(65) 41.2(12.2)i

2 1,3,5,6 3 4-13 2 exp 1.3060(52) 4.73/6 0.2474(51) 1.7057(135) -77.1(2.8)

3 1,3,5,6 3 4-11 2 exp 1.495(15) 0.35/4 0.4093(118) 2.236(45) -16.7(12.4)

TABLE VII. Final results for the lowest three energy levels in the D∗
0 channel with JP = 0+. For each state the timeslice t0

for the variational method, the fit range, fit type and χ2/d.o.f as well as results for the energy En, the momentum p∗ defined
in (10), the invariant mass squared s and the S-wave scattering phase δ0 are provided. Interpolators O1−4 of type uc̄ are listed
in Table XII, while O5,6 of type Dπ are given in (21).

level n interpolators t0 fit range type Ena χ2/d.o.f ap∗ sa2 δ0

1 1,4,7,8,9,10 3 9-19 1 exp 1.1978(28) 7.30/9 0.0938(40)i 1.4348(68) 40.9(14.0)i

2 1,4,7,8,9,10 3 8-16 1 exp 1.3222(90) 1.72/7 0.1810(291) 1.748(24) -43.3(4.7)

3 1,4,7,8,9,10 3 8-16 1 exp 1.3456(71) 5.34/7 0.2068(80) 1.811(19) -55.7(4.0)

4 1,4,7,8,9,10 3 7-11 1 exp 1.571(10) 0.30/3 0.4107(83) 2.469(32) -16.1(7.0)

TABLE VIII. Final results for the lowest four energy levels in the D1 channel with JP = 1+. For an explanation of the entries
see Table VII.
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FIG. 5. Energy levels in the JP = 0+ channel for three differ-
ent choices of interpolator basis. The panel on the left shows
the full results from a basis O1,3,5,6 of uc̄ and Dπ interpo-
lators. The mid panel shows results from just uc̄ interpola-
tors (O1,3,4), while the right panel from just Dπ interpolators
(O5,6). Interpolators are listed in Table XII and Eq. (21).
All data are for t0 = 3.

compare the results for the lowest levels in the D∗
0 chan-

nel for different choices of interpolator basis in Figure 5.
The results plotted in the left panel correspond to the
data from our final choice of interpolators already shown
in Figure 4. In the right panel we plot data from our
2 × 2 basis of meson-meson interpolators. As expected
these interpolators lead to energy levels in the vicinity
of the non-interacting D(0)π(0) and D(1)π(−1) states,
but also show sizable excited state contaminations. The
mid panel shows results from a basis consisting of a sub-
set of qq̄ interpolators. The ground state for this choice

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6s
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-0.6

-0.4
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s1/
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FIG. 6. The quantity ρ0(s) =
p∗√
s
cot δ for theDπ scattering in

channel JP = 0+ as a function of s, both in units of the lattice
spacing. For a single Breit-Wigner type resonance points are
expected to lie on a straight line as suggested by (16,17).

turns out to be in the vicinity of the D(0)π(0) state but
has much larger errors than the ground state from the
full basis in the plateau region. The effective masses
calculated from the second and third eigenvalues never
plateau and are very noisy. This is quite contrary to the
full basis, where the plateau for the level n = 2 is well
determined. From this plot it is quite obvious that an
analysis of the energy levels considering only qq̄ interpo-
lating fields would not lead to satisfactory results with
our sources and statistics.
Table VII shows the results for the preferred interpola-

tor choices that combine qq̄ and meson-meson interpola-
tors and correspond to the levels in Figure 4. It provides
the momentum p∗ defined in (10), the invariant mass

Expt : 

� = 267(40)MeV

m(D⇤
0)�M1S = 347(2)MeV

! g  1.92(14)GeV
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g = 2.55(21)(03)GeV

m(D⇤
0)�M1S = 350.8(20.2)(3.7)MeV

M1S = (M(D) + 2M(D⇤))/4

almost consistent with expt.
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FIG. 8. Energy levels in the JP = 1+ channel for three differ-
ent choices of interpolator basis. The panel on the left shows
the full results from a basis O1,4,7,8,9,10 of uc̄ andD∗π interpo-
lators. The mid panel shows results from just uc̄ interpolators
(O1,4,7,8), while the right panel contains our results from just
D∗π interpolators (O9,10). Interpolators are listed in Table
XII and Eq. (23). All data are for t0 = 3.
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FIG. 9. Same as Figure 6 for the D1 channel with JP = 1+.

meson-meson interpolators. This comparison is shown
in Figure 8. The results from qq̄ interpolators alone are
shown in the mid panel. The two largest eigenvalues lead
to effective masses which seem to display a clear plateau
at intermediate source-sink separations. In the right
panel the results using only meson-meson interpolators
are shown. Here we observe clear signals in the vicinity
of the non-interacting D∗(0)π(0) and D∗(1)π(−1) states.
Notice that the lowest level from just qq̄ interpolators
is at best marginally compatible with the ground state
from meson-meson interpolators. Turning our attention
to the full basis shown in the left panel, we notice that
the ground state is compatible with the state observed
from meson-meson interpolators alone, while the n = 2
level is very similar to the n = 2 level with just qq̄ in-

terpolators. There is no level in the vicinity of the qq̄
ground state (green left triangles in the mid panel) but a
new state (blue diamonds in the left panel) emerges. The
n = 4 state is found in the vicinity of the non-interacting
D∗(1)π(−1) level. It is interesting to see that one of the
levels observed with just qq̄ interpolators survives with
no significant change in energy, while the lowest changes
quite drastically. We will return to this observation for
our interpretation of the data below.
The numerical results and fit parameters correspond-

ing to the final choice of basis are tabulated in Table
VIII. For the three lowest levels the S-wave phase shift
δ0 is well determined. For the fourth level, which is in
the vicinity of the non-interacting D∗(1)π(−1) state and
has large overlap with interpolator O10, the results have
a large uncertainty, just like in the case of the third level
in the JP = 0+ channel. The results for ρ0(s) =

p∗

√
s
cot δ0

are plotted as a function of s in Figure 9.
The S-wave D∗π scattering length (15) is extracted

from the lowest level with small p∗

aI=1/2
0 = 6.53 ± 1.34 a

= 0.81 ± 0.17 ± 0.01 fm , (27)

aI=1/2
0

µDπ
= 17.6 ± 3.1 ± 0.2 GeV−2 ,

which agrees with the result for Dπ (24). This can be
compared to a calculation using heavy meson ChPT [17]
in which a0/µDπ ≈ 10.5 GeV−2 is obtained. Just like
similar heavy meson ChPT calculations for the Dπ scat-
tering length [11, 15, 16] this value is somewhat lower
than our result.
With our restricted number of phase shift points a

general extraction of resonance parameters for two res-
onances is not possible. We therefore have to appeal
to knowledge from the heavy-quark limit [7], outlined in
the introduction, in order to extract anything more than
values of the S-wave phase shift in this channel. One
expects two JP = 1+ resonances in this limit [7]: one

broad resonance with jP = 1
2

+
which decays into D∗π in

S-wave, and one narrow resonance with jP = 3
2

+
which

only decays to D∗π in D-wave. This qualitatively agrees
with the experiment, where the D1(2430) is broad with
Γ = 384+130

−110 MeV, while the D1(2420) is fairly narrow
with Γ = 27.1(2.7) MeV [33]. The presence of addi-
tional levels in Fig. 7 is related to resonances, and we
will assume that the energy level unaffected by the in-
clusion of meson-meson interpolating fields (red boxes in
Figure 8) corresponds to the narrow D1(2420). This res-
onance is below D-wave threshold D∗(1)π(−1) for our
L, so D1(2420) in our simulation is stable against the
only decay channel in the heavy quark limit. Away from
this limit, this state might also develop a small width in
S-wave, but we expect that the D1(2420) in our simula-
tion is even narrower than in experiment. It is therefore
assumed that this narrow D1(2420) does not affect the
D∗π phase shifts at the positions of the other three lev-

SC. phase shift of D⇤ + ⇡ , S-wave

maybe 
: very narrow

omitting this state,
they analyze as one resonance with

g = 2.01(15)(02)GeV � = 384(107)MeV ! g  2.50(40)GeV

m(D1(2420))�M1S = 448.77(14.1)(4.7)MeV

m(D1(2430))�M1S = 380.7(20.0)(4.0)MeV 456(40)MeV

449.9(0.6)MeV
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D. Mohler, S. Prelovsek, R.M. Woloshyn, 
PRL111(2013)222001, PRD90(2014)034510.

D

K
JP

4980�

1864

2317

0�

0+

Mass

s̄c

s̄�5u

ū�5c

D⇤
s0 < (K +D = 2362 )

(4) 
( D +K , S-wave , bound state )

They also study Ds1(2536) , D
⇤
s2(2573)we obtain M1 ! 0:7534, M2 ! 0:828, and M4 ! 0:889.)

Consequently, mass splittings will be quoted with respect
to the mass of the spin-averaged 1S state M1S ¼ ðMDs

þ
3MD%

s
Þ=4 in our final results and in all figures. For ensemble

(2) the strange quark mass used in Ref. [24] differs signifi-
cantly from the physical value. We therefore use a partially
quenched strange quarkmval

s ! msea
s and determine the hop-

ping parameter !val
s by minimizing the difference of the "

meson mass from the experimental mass and the difference
of the unphysical #s meson from the value expected from a
high-precision lattice determination [31]. The determina-
tions agree to high precision and !s ¼ 0:13666 is obtained.

To handle the backtracking quark loops appearing in the
Wick contractions, the powerful distillation method [32] is
used. This can be seen as a smearing prescription produc-
ing quark sources and sinks that are approximately
Gaussian. The method allows for a large freedom in the
choice of interpolators and for momentum projection at
source and sink. The exact Laplacian-Heaviside version is
used for ensemble (1) and the stochastic extension of
distillation [9] for ensemble (2). Within this approach we
calculate the correlation matrix

CijðtÞ ¼
X

ti

h0jOiðti þ tÞOy
j ðtiÞj0i

¼
X

n

e'tEnh0jOijnihnjOy
j j0i; (1)

using interpolating fields Oi with JP ¼ 0þ (irrep Aþ
1 ),

isospin I ¼ 0, and total momentum zero. Four quark-
antiquark interpolators O !sc

1'4 ¼ !sA1'4c taken to be the
entries 1–4 of irrep Aþ

1 in Table XII of Ref. [30] are
used. There are also three meson-meson interpolators

ODK
1 ¼½!s$5u)ðp¼ 0Þ½ !u$5c)ðp¼ 0Þþ fu! dg;

ODK
2 ¼½!s$t$5u)ðp¼ 0Þ½ !u$t$5c)ðp¼ 0Þþ fu! dg;

ODK
3 ¼

X

p¼*ex;y;z2%=L

½ !s$5u)ðpÞ½ !u$5c)ð'pÞþ fu! dg:
(2)

The discrete energy levels En are extracted from the
correlators (1) using the variational method [33–35].
Figure 1 illustrates the results for the spectrum obtained
from both lattices. In each panel the left set of points
indicates the ground state level with just a quark-antiquark
basis while the right set of points indicates the energies
using our full basis. (The second level from the !qq basis is

of poor statistical quality and it appears above the second
level obtained from the full basis. It is away from the
energy region of interest, it does not influence the conclu-
sions, and it is not plotted for clarity.) The lower dashed
lines denotes the mD þmK threshold on both lattices,
while the upper dashed line corresponds to the energy of
the noninteracting Dð1ÞKð'1Þ scattering state. Note that
two low-lying states are observed when using the com-
bined basis. Their signal is unambiguous upon variation of
the basis, as long as at least one ofODK

1;2 and at least twoO !sc

interpolators, or both of ODK
1;2 and one or more of the O !sc

interpolators, are used. The interpolator ODK
3 is needed to

render the Dð1ÞKð'1Þ state. This level will not be used in
the analysis but for our conclusions it is important that it
can indeed be identified with the interacting Dð1ÞKð'1Þ.
Taking a look at the lowest two energy levels on each

ensemble there are two possible interpretations: 1. A sub-
threshold state that is stable under the strong interaction (in
the isospin limit). We will refer to such a state as a ‘‘bound
state’’ but stress that this choice of words makes no state-
ment about a possible !qq or meson-meson nature of the
state. In this case a negative scattering length is expected
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FIG. 1 (color online). Energy levels from ensemble (1) (left
panel) and ensemble (2) (right panel). For each case results with
just quark-antiquark ( !qq) and with a combined basis of !qq and
DK interpolating fields are shown. The lower dashed lines
indicate MD þMK on both ensembles, while upper dashed lines
show the energies of noninteracting Dð1ÞKð'1Þ. The error bars
include statistical and scale setting corrections.

TABLE I. Details of gauge configurations used. NL and NT denote the number of lattice
points in spatial and time directions, Nf the number of dynamical flavors, and a the lattice
spacing. The pion mass for ensemble (2) is taken from Ref. [24], while the kaon mass results
from our calculation with partially quenched strange quarks.

ID N3
L + NT Nf a [fm] L [fm] No. configs m% [MeV] mK [MeV]

(1) 163 + 32 2 0.1239(13) 1.98 279 266(3)(3) 552(2)(6)
(2) 323 + 64 2+1 0.0907(13) 2.90 196 156(7)(2) 504(1)(7)

PRL 111, 222001 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
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222001-2
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This state should be found  
as bound state of D + K scattering system.



SC. phase shift of D +K , S-wave

black line : finite size formula
red line = �|pa| : corresponding to cot � = i

ground state is near red line  =>  bound state 

E0 �M1S

Expt.
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(5)  NN scattering by two methods 
finite size method vs. HAL potential method

HAL coll., PRL99(2007)02201, PTP123(2010)89.HAL potential method
(1) Calculation of BS wave function by the lattice QCD.

(2) Extraction of “potential”  V  from wave function by Schrödinger eq. at energy Ep  . 

�(x) = h0|N(x/2)N(�x/2) |NN ;Ep i Ep = 2
q
m2

N + p2

� r2

mN
�(x) + V (x)�(x) = Ep�(x)

(3) Solving Schrödinger eq. with the potential V  at general energy Ek  .

� r2

mN
 (x; k) + V (x) (x; k) = Ek (x; k) Ek = 2

q
m2

N + k2

=>  SC. phase shift at general energy Ek (x; k)
19

( �(x) ! V (x) )

( V (x) !  (x; k) )

[ More sophisticated method is recently used. ]



Works by HAL coll.
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● NN potential
N. Ishii ,  S. Aoki, T. Hatsuda,  PRL99(2007)02201;  

● Energy dependence of NN potential

● LS force in odd parity sectors

● Hyperon potential

● Charmed meson system

● ΩΩ potential

● NΩ potential

● H dibaryon

K. Murano et al,  PTP125(2011)1225.

HAL coll.,  PLB735(2014)19.

HAL coll.,  Int.J.Mod.Phys.E19(2010)2442.

HAL coll.,  PLB729(2014)85.

HAL coll., PoS(Lattice 2014)232; arXiv:1503.03189.

HAL coll.,  NPA928(2014)89.

HAL coll., PTP127(2012)723.  

HAL coll., PoS CD12(2013)025.

● NNN potential

HAL coll.,  PRL106(2011)162002; NPA88(2012)28. 

......
● Zc+ see Parallel-B 27-2 by Ikeda.

● Couple channel see Parallel-B 27-1 by Sasaki.



phase shift

HAL coll., PoS CD12(2013)025.

1S0

much smaller than expt.

No bound state in both 1S0 and 3S0.

21

NN channels with HALQCD method

HALQCD, Nf = 2+ 1 mπ = 0.41,0.57,0.70 GeV PoS(CD12):025
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3. Numerical Results

3.1 2+1 flavor QCD results of nuclear forces

By using 2+1 flavor gauge configurations generated by PACS-CS collaboration [26], we present
the 2+1 flavor QCD results of nuclear forces VC(r) and VT(r) for the positive parity sector. The
gauge configurations are generated by employing the RG improved Iwasaki gauge action at β =
1.9 with the non-perturbatively O(a) improved Wilson quark action with CSW = 1.715 at κud =
0.13700,0.13727,0.13754 and κs = 0.13640, which leads to the lattice spacing a ! 0.091 fm
(a−1 = 2.176(31) GeV), the spatial extension L = 32a! 2.90 fm, the pion mass mπ ! 701,570,411
MeV and the nucleon mass mN ! 1584,1412,1215 MeV, respectively.
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Figure 3: 2+1 flavor QCD result of the spin-singlet central potential, spin-triplet central potential and the
tensor potential for the even parity sector for mπ ! 411,570,701 MeV.

Fig. 3 shows the 2+1 flavor QCD results of central and tensor potentials for even parity sector.
These potentials show the phenomenologically expected properties, i.e., the central potentials have
repulsive cores at short distance surrounded by attractive pockets in the medium distance. As
the decreasing quark mass, the repulsive core grows, the attractive pockets are enhanced and the
strength of tensor potential is enhanced.

We parametrize these potentials by using a functional form of AV18[1]. We perform a simul-
taneous fit of two VC(r) and one VT(r) by

VC;10(r) = − f 2mπYc(r)+ Ic
10T 2

c (r)+
(
Pc

10 +(mπr)Qc
10 +(mπr)2Rc

10
)

Wr0,a(r) (3.1)

VC;01(r) = − f 2mπYc(r)+ Ic
01T 2

c (r)+
(
Pc

01 +(mπr)Qc
01 +(mπr)2Rc

01
)

Wr0,a(r)

VT ;01(r) = − f 2mπTc(r)+ It
01T 2

c (r)+
(
Pt

01 +(mπr)Qt
01 +(mπr)2Rt

01
)

Wr0,a(r),

which have 16 adjustable parameters: f 2,c,r0,a, Ic
10,P

c
10,Q

c
10,R

c
10, Ic

01,P
c
01,Q

c
01,R

c
01, It

01,P
t
01,Q

t
01,R

t
01.

Suffixes “10” and “01” indicate T = 1,S = 0 and T = 0,S = 1 respectively. Superindices “c”
and “t” indicate “central” and “tensor”, respectively. Yc(r) ≡ (1− e−cr2)e−mπ r/(mπr) denotes the
Yukawa function and Tc(r)≡ (1−e−cr2)2(1+3/(mπr)+3/(mπr)2)e−mπ r/(mπr) denotes the tensor
function with a Gaussian cutoff parameter c at short distance. Wr0,a(r) ≡ 1/(1 + e(r−r0)/a denotes
Woods-Saxon function. Our tensor potential has a cusp at r =

√
3a ! 0.16 fm, where a smooth

parametrization becomes difficult. To avoid this, we use r ≥
√

3a as the fitting region for the
tensor force, whereas linear interpolation is performed in the region r <

√
3a. As an attempt to

take into account a possible artifact of periodic boundary, we use V̄C;190(!r) ≡ ∑!n∈Z3 Vc;10(|!r−L!n|),
V̄C;01(!r)≡ ∑!n∈Z3 Vc;01(|!r−L!n|), V̄T ;01(!r)≡ ∑!n∈Z3 VT ;01(|!r−L!n|), i.e., we use V̄C;10(!r), V̄C;01(!r) and
V̄T ;01(!r) defined on the finite torus to extract spherically symmetric VC;10(r), VC;01(r) and VT ;01(r).
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Fig. 4(left) shows the result of the spin-singlet central potential for mπ ! 570 MeV. We see that the
lattice data is smoothly parametrized. Deviation of VC;10(r) from V̄C;10(!r) is seen to be less signifi-
cant, which indicates that L ! 3 fm is sufficient for mπ ! 570 MeV. (Deviation becomes gradually
important at mπ ! 411 MeV.)

These results are used to solve Schrödinger equation for scattering observables. The resultant
scattering phase for 1S0 channel is shown in Fig. 4(right). We see that the behaviors are qualitatively
reasonable. However, the strength is weaker than the experimental one. In addition, they do not
tend to approach the experimental one in this quark mass region. Possible reason would be that, in
this quark mass region, the repulsive core is enhanced faster than the attractive pocket grows, which
indicates the importance of direct lattice QCD calculation at smaller quark mass region. Note that
the result indicates that NN interaction is attractive at low energy, but it is not strong enough to
make a bound state 2.
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Figure 4: (left) The result of the fit for the spin-singlet central potential for mπ ! 570 MeV. (right) The
scattering phase in 1S0 channel for mπ ! 411,570,701 MeV by using the resultant potentials.

3.2 Nuclear forces for the odd parity sector and the spin-orbit force

Nuclear potentials in odd parity sector have to be determined for complete determination of
nuclear potentials on the lattice. These potentials naturally enter the calculation, whenever we
study the nuclear matter and multi-nucleon systems involving more than three nucleons. Note that,
even if the total multi-nucleon system has even parity, its two-body subsystem can have odd parity.

The spin-orbit potential plays important roles in various phenomena in nuclear physics and as-
trophysics. It induces the one-body spin-orbit term in the average single-particle nuclear potential,
which is used to explain the magic numbers in atomic nuclei. By giving a strong attraction to two
nucleon system in 3P2 channel at high energy/density, the spin-orbit potential is expected to induce
the neutron superfluidity in the neutron stars, which provides a mechanism of neutron star cooling.

As a recent progress, we have extended our method to the nuclear potentials in odd parity
sector and the spin-orbit potential [18, 19]. Before, our studies were restricted to the central and
the tensor potentials for even parity sector due to a technical reason that “orbital part” of our two-
nucleon sources were “s-wave” so that the accessible quantum numbers were restricted to JP ! 0+

and 1+. To obtain the nuclear potentials for odd parity sectors and the spin-orbit potential, we

2This is in conflict with Refs. [27, 28].
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3. Numerical Results

3.1 2+1 flavor QCD results of nuclear forces

By using 2+1 flavor gauge configurations generated by PACS-CS collaboration [26], we present
the 2+1 flavor QCD results of nuclear forces VC(r) and VT(r) for the positive parity sector. The
gauge configurations are generated by employing the RG improved Iwasaki gauge action at β =
1.9 with the non-perturbatively O(a) improved Wilson quark action with CSW = 1.715 at κud =
0.13700,0.13727,0.13754 and κs = 0.13640, which leads to the lattice spacing a ! 0.091 fm
(a−1 = 2.176(31) GeV), the spatial extension L = 32a! 2.90 fm, the pion mass mπ ! 701,570,411
MeV and the nucleon mass mN ! 1584,1412,1215 MeV, respectively.
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Figure 3: 2+1 flavor QCD result of the spin-singlet central potential, spin-triplet central potential and the
tensor potential for the even parity sector for mπ ! 411,570,701 MeV.

Fig. 3 shows the 2+1 flavor QCD results of central and tensor potentials for even parity sector.
These potentials show the phenomenologically expected properties, i.e., the central potentials have
repulsive cores at short distance surrounded by attractive pockets in the medium distance. As
the decreasing quark mass, the repulsive core grows, the attractive pockets are enhanced and the
strength of tensor potential is enhanced.

We parametrize these potentials by using a functional form of AV18[1]. We perform a simul-
taneous fit of two VC(r) and one VT(r) by

VC;10(r) = − f 2mπYc(r)+ Ic
10T 2

c (r)+
(
Pc

10 +(mπr)Qc
10 +(mπr)2Rc

10
)

Wr0,a(r) (3.1)

VC;01(r) = − f 2mπYc(r)+ Ic
01T 2

c (r)+
(
Pc

01 +(mπr)Qc
01 +(mπr)2Rc

01
)

Wr0,a(r)

VT ;01(r) = − f 2mπTc(r)+ It
01T 2

c (r)+
(
Pt

01 +(mπr)Qt
01 +(mπr)2Rt

01
)

Wr0,a(r),

which have 16 adjustable parameters: f 2,c,r0,a, Ic
10,P

c
10,Q

c
10,R

c
10, Ic

01,P
c
01,Q

c
01,R

c
01, It

01,P
t
01,Q

t
01,R

t
01.

Suffixes “10” and “01” indicate T = 1,S = 0 and T = 0,S = 1 respectively. Superindices “c”
and “t” indicate “central” and “tensor”, respectively. Yc(r) ≡ (1− e−cr2)e−mπ r/(mπr) denotes the
Yukawa function and Tc(r)≡ (1−e−cr2)2(1+3/(mπr)+3/(mπr)2)e−mπ r/(mπr) denotes the tensor
function with a Gaussian cutoff parameter c at short distance. Wr0,a(r) ≡ 1/(1 + e(r−r0)/a denotes
Woods-Saxon function. Our tensor potential has a cusp at r =

√
3a ! 0.16 fm, where a smooth

parametrization becomes difficult. To avoid this, we use r ≥
√

3a as the fitting region for the
tensor force, whereas linear interpolation is performed in the region r <

√
3a. As an attempt to

take into account a possible artifact of periodic boundary, we use V̄C;190(!r) ≡ ∑!n∈Z3 Vc;10(|!r−L!n|),
V̄C;01(!r)≡ ∑!n∈Z3 Vc;01(|!r−L!n|), V̄T ;01(!r)≡ ∑!n∈Z3 VT ;01(|!r−L!n|), i.e., we use V̄C;10(!r), V̄C;01(!r) and
V̄T ;01(!r) defined on the finite torus to extract spherically symmetric VC;10(r), VC;01(r) and VT ;01(r).
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Fig. 4(left) shows the result of the spin-singlet central potential for mπ ! 570 MeV. We see that the
lattice data is smoothly parametrized. Deviation of VC;10(r) from V̄C;10(!r) is seen to be less signifi-
cant, which indicates that L ! 3 fm is sufficient for mπ ! 570 MeV. (Deviation becomes gradually
important at mπ ! 411 MeV.)

These results are used to solve Schrödinger equation for scattering observables. The resultant
scattering phase for 1S0 channel is shown in Fig. 4(right). We see that the behaviors are qualitatively
reasonable. However, the strength is weaker than the experimental one. In addition, they do not
tend to approach the experimental one in this quark mass region. Possible reason would be that, in
this quark mass region, the repulsive core is enhanced faster than the attractive pocket grows, which
indicates the importance of direct lattice QCD calculation at smaller quark mass region. Note that
the result indicates that NN interaction is attractive at low energy, but it is not strong enough to
make a bound state 2.
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Figure 4: (left) The result of the fit for the spin-singlet central potential for mπ ! 570 MeV. (right) The
scattering phase in 1S0 channel for mπ ! 411,570,701 MeV by using the resultant potentials.

3.2 Nuclear forces for the odd parity sector and the spin-orbit force

Nuclear potentials in odd parity sector have to be determined for complete determination of
nuclear potentials on the lattice. These potentials naturally enter the calculation, whenever we
study the nuclear matter and multi-nucleon systems involving more than three nucleons. Note that,
even if the total multi-nucleon system has even parity, its two-body subsystem can have odd parity.

The spin-orbit potential plays important roles in various phenomena in nuclear physics and as-
trophysics. It induces the one-body spin-orbit term in the average single-particle nuclear potential,
which is used to explain the magic numbers in atomic nuclei. By giving a strong attraction to two
nucleon system in 3P2 channel at high energy/density, the spin-orbit potential is expected to induce
the neutron superfluidity in the neutron stars, which provides a mechanism of neutron star cooling.

As a recent progress, we have extended our method to the nuclear potentials in odd parity
sector and the spin-orbit potential [18, 19]. Before, our studies were restricted to the central and
the tensor potentials for even parity sector due to a technical reason that “orbital part” of our two-
nucleon sources were “s-wave” so that the accessible quantum numbers were restricted to JP ! 0+

and 1+. To obtain the nuclear potentials for odd parity sectors and the spin-orbit potential, we

2This is in conflict with Refs. [27, 28].
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Binding energy of NN ground state 
T.  Yamazaki, K.-I. Ishikawa, Y. Kuramashi, A. Ukawa,
PRD86(2012)074514; arXiv:1502.04182.

!EL from an exponential fit for RðtÞ of Eq. (3) in the range
of t ¼ 9–14. The systematic error of the fit is estimated as
explained in the previous subsections.

Figure 7 shows the result for !Eeff
L in the 1S0 channel on

the ð5:8 fmÞ3 box. The value of !Eeff
L is again negative

beyond the error bars in the plateau region, though the
absolute value is smaller than in the 3S1 case. The energy
shift !EL is obtained in the same way as for the 3S1
channel.

The volume dependences of !EL in the 3S1 and 1S0
channels are plotted as a function of 1=L3 in Figs. 8 and 9,
respectively. The numerical values of !EL on all the
spatial volumes are summarized in Table IV, where the
statistical and systematic errors are given in the first and
second parentheses, respectively. There is little volume
dependence for !EL, indicating a nonzero negative value
in the infinite volume and a bound state, rather than the
1=L3 dependence expected for a scattering state, for the
ground state for both channels.

The binding energies in the infinite spatial volume limit
in Table IV are obtained by fitting the data with a function

including a finite volume effect on the two-particle bound
state [27,28],

!EL ¼ $ !2

mN

8
<
:1þ

C!

!L

X0

~n

expð$!L
ffiffiffiffiffi
~n2

p
Þffiffiffiffiffi

~n2
p

9
=
;; (14)

where ! and C! are free parameters, ~n is a three-

dimensional integer vector and
P0

~n
denotes the summation

without j ~nj ¼ 0. The binding energy$!E1 is determined
from

$ !E1 ¼ !2

mN
; (15)

where we assume

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N $ !2
q

$ 2mN & $ !2

mN
: (16)

The systematic error is estimated from the variation of the
fit results choosing different fit ranges in the determination
of !EL and also using constant and linear fits as
alternative fit forms. We obtain the binding energies
$!E1 ¼ 11:5ð1:1Þð0:6Þ MeV and 7.4(1.3)(0.6) MeV for
the 3S1 and 1S0 channels, respectively. The result for the
3S1 channel is roughly five times larger than the experi-
mental value, 2.22 MeV. Our finding of a bound state in the
1S0 channel contradicts the experimental observation.
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TABLE IV. Same as Table III for the 3S1 and 1S0 channels.

3S1
1S0

L $!EL [MeV] Fit range $!EL [MeV] Fit range

32 12.4(2.1)(0.5) 9–14 6.2(2.4)(0.5) 10–14
40 12.2(1.9)(0.6) 10–15 8.2(4.0)(1.5) 11–15
48 11.1(1.7)(0.3) 10–14 7.3(1.7)(0.5) 10–14
64 11.7(1.2)(0.5) 9–14 7.2(1.4)(0.3) 10–14
1 11.5(1.1)(0.6) ' ' ' 7.4(1.3)(0.6) ' ' '
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!EL from an exponential fit for RðtÞ of Eq. (3) in the range
of t ¼ 9–14. The systematic error of the fit is estimated as
explained in the previous subsections.

Figure 7 shows the result for !Eeff
L in the 1S0 channel on

the ð5:8 fmÞ3 box. The value of !Eeff
L is again negative

beyond the error bars in the plateau region, though the
absolute value is smaller than in the 3S1 case. The energy
shift !EL is obtained in the same way as for the 3S1
channel.

The volume dependences of !EL in the 3S1 and 1S0
channels are plotted as a function of 1=L3 in Figs. 8 and 9,
respectively. The numerical values of !EL on all the
spatial volumes are summarized in Table IV, where the
statistical and systematic errors are given in the first and
second parentheses, respectively. There is little volume
dependence for !EL, indicating a nonzero negative value
in the infinite volume and a bound state, rather than the
1=L3 dependence expected for a scattering state, for the
ground state for both channels.

The binding energies in the infinite spatial volume limit
in Table IV are obtained by fitting the data with a function

including a finite volume effect on the two-particle bound
state [27,28],
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P0

~n
denotes the summation

without j ~nj ¼ 0. The binding energy$!E1 is determined
from
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where we assume
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The systematic error is estimated from the variation of the
fit results choosing different fit ranges in the determination
of !EL and also using constant and linear fits as
alternative fit forms. We obtain the binding energies
$!E1 ¼ 11:5ð1:1Þð0:6Þ MeV and 7.4(1.3)(0.6) MeV for
the 3S1 and 1S0 channels, respectively. The result for the
3S1 channel is roughly five times larger than the experi-
mental value, 2.22 MeV. Our finding of a bound state in the
1S0 channel contradicts the experimental observation.
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TABLE IV. Same as Table III for the 3S1 and 1S0 channels.

3S1
1S0

L $!EL [MeV] Fit range $!EL [MeV] Fit range

32 12.4(2.1)(0.5) 9–14 6.2(2.4)(0.5) 10–14
40 12.2(1.9)(0.6) 10–15 8.2(4.0)(1.5) 11–15
48 11.1(1.7)(0.3) 10–14 7.3(1.7)(0.5) 10–14
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m⇡ = 510MeV

1S0

0 2e-06 4e-06 6e-06 8e-06 1e-05

1/L3

-25

-20

-15

-10

-5

0

experiment
const
linear
bound

∆EL(3S1) [MeV]

FIG. 11. Same figure as Fig. 4, but for 3S1 NN channel. Fit result using finite volume dependence

of two-particle binding energy Eq.(14) is compared with other fit results.
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m⇡ = 300MeV

Bound state in both channels !!
: inconsistent with Expt. and HAL coll.  !! Reason ?

[ Consistency is seen in I=2 ππ system. ]

�E = E0 � 2 ·mN

T. Kurth, N. Ishii, T. Doi, S. Aoki, T. Hatsuda, JHEP1312(2013)015. 22

3S1



4. Summary
Analysis of scattering phase shift give us 
a lot of information of hadron interactions.

In recent the lattice calculation,
a lot of studies of resonance and bound state 
 form the phase shift are carried out. 

Next step of the lattice calculations : 

●  Calculations at physical quark mass.

●  Application to other systems ( including the baryon ).

23

●  Solving the problem in NN scattering system.
[ Finite size method vs. HAL potential method ]

Thanks for your attention.
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K*(892) ( K + π , I=1/2, P-wave )
S. Prelovsek, L. Leskove, C.B. Lang, D. Mohler, 
PRD88(2013)054508.

the amplitude method and assuming that the K! and K!
lattice energies are equal.

B. The phase shift !1 for 1:3 <
ffiffiffi
s

p
< 1:6 GeV and

K!ð1410Þ, K!
2ð1430Þ

Unlike in the region
ffiffiffi
s

p
< 1:3 GeV, our exploratory

extraction of the physics information from the energy
levels in the region

ffiffiffi
s

p
> 1:3 GeV will inevitably be less

reliable and based on certain approximations.
First of all, we will assume that the K! scattering in our

simulation is elastic (j1þ 2iTlj ¼ 1) up to
ffiffiffi
s

p
< 1:6 GeV,

which is a strong approximation but indispensable for
using Lüscher’s relations to extract the phase shift at
present. In reality the K! channel is coupled in this region
to K!! and K" channels, and experimentally
Br½K!ð1410Þ ! K!' ¼ 6:6( 1:3%while Br½K!ð1680Þ !
K!' ¼ 38:7( 2:5%. The treatment of such an inelastic
problem is unfortunately beyond the ability of current
lattice simulations, although some practically very chal-
lenging approaches have been proposed analytically
[34,44–47]. In fact, we expect that the influence of K!!
and K" channels in our simulation is not significant, since
we did not explicitly incorporate K!! and K"
interpolators.4

The second complication stems from the fact that
d-wave phase shift #2 cannot be neglected around

ffiffiffi
s

p ’
mK!

2ð1430Þ in Lüscher’s relations. Therefore, we derived the

Lüscher relations that contain #1 as well as #2 for irreps
considered here: they are obtained from the so-called
determinant condition5 Eq. (28) in [3] by keeping nonzero
#2. For each irrep B3, B2, E we get one (lengthy) phase

shift equation [analog to Eqs. (41), (42), (56) in [3]], which
depends on q [see Eq. (6)], #1ðsÞ, and #2ðsÞ.
For a given level En in a given irrep, we know q (6) and

s ¼ E2
n ) P2, but one phase shift equation alone cannot

provide the values for two unknowns #1ðsÞ and #2ðsÞ.
Another level in another irrep unfortunately leads to two
different unknowns #1ð~sÞ and #2ð~sÞ, since this level in
general corresponds to a different ~s (see discussion in
Sec. 3.1.3 of [3]). We overcome this serious difficulty by
noting that the four levels with ‘‘ID’’ K!ð1410Þ all have the
invariant mass in a very narrow range of

ffiffiffi
s

p ¼
1:34( 0:01 GeV (see Table III). By making a reasonable
approximation that s is the same for all four levels, we
extract the unknown #1 and #2 by solving simultaneously
two phase shift equations, namely, for6

level 3 in irrepB2 and level 2 in irrepE:
ffiffiffi
s

p ¼ 1:34( 0:01 GeV ! #1 ¼ 329:9* ( 4:4*

#2 ¼ 89:6* ( 7:1*: (9)

Then we extract #1;2 from another pair of phase shift
equations, corresponding to

level 3in irrepB2 and level 2 in irrepB3:ffiffiffi
s

p ¼ 1:34( 0:01 GeV !
#1 ¼ 329:8* ( 4:9* #2 ¼ 91:4* ( 6:2*; (10)

arriving at consistent results for the phases when compared
to (9), which indicates that our approximations are sen-
sible. For the third pair of irreps, B3 andE, we did not find a
solution in the range of real #1;2. The average #1 from (9)
and (10) is provided for the corresponding levels in
Table III and by the black dot in Fig. 5.
Finally we attempt an exploratory extraction of

K!ð1410Þ resonance parameters by fitting the resulting #1

using a Breit-Wigner parametrization for two resonances
in the elastic region [see Eqs. (7) and (8)]

TABLE II. The resulting resonance masses and K!
i ! K!

couplings g, which parametrize the width !½K!
i ! K!' ¼

ðg2i p!3Þ=ð6!sÞ. The lattice results apply for our m! ’
266 MeV andmK ’ 552 MeV, while the experimental couplings
are derived from the observed !½K!

i !K!'¼Br½K!
i !K!'!K!

i

and the values of p! and s in experiment.

mK!ð892Þ
[MeV]

gK!ð892Þ
[no unit]

mK!ð1410Þ
[GeV]

gK!ð1410Þ
[no unit]

Lattice 891( 14 5:7( 1:6 1:33( 0:02 Input
Experiment 891:66( 0:26 5:72( 0:06 1:414( 0:0015 1:59( 0:03
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s

FIG. 6 (color online). The combination ðp!aÞ3ffiffiffiffiffiffi
sa2

p cot#1ðsÞ as a
function of sa2 in the vicinity of a narrow K!ð892Þ resonance.
The dependence is expected to be linear (8) for a Breit-Wigner
resonance and the linear fit leads to mK! and the coupling g or
!½K! ! K!' (7).

4Similarly, most of the previous simulations of meson reso-
nances with "qq interpolators assume that the scattering levels are
not seen when they are not explicitly incorporated.

5For the original derivation of determinant condition, see
[42,48,49].

6The levels n ¼ 3 in irreps Eðex;yÞ and Eðex ( eyÞ occur at
very similar

ffiffiffi
s

p
, so they both lead to consistent #1;2 via the same

Lüscher relation (56) in [3]. The errors on the resulting #1;2 in (9)
and (10) are determined from the minimal and maximal values offfiffiffi
s

p
in the range

ffiffiffi
s

p ¼ 1:34( 0:01 GeV.
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m⇡ = 391MeV
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·
p
s(m2 � s)

: bound state 
un-physical kinematics.
quark mass is too large.

Scattering amplitudes.—For an interacting quantum field
theory, the relationship between the discrete spectrum of
states in an L × L × L volume, in a frame moving with
momentum ~P, for irrep Λ, can be written in a simplified
form as

det½δijδJJ0 þ iρi t
ðJÞ
ij ðEc:m:Þ(δJJ0 þ iM~PΛ

JJ0ðpiLÞ)% ¼ 0;

where the scattering t matrix for partial-wave J appears
along with the phase space in channel i, ρiðsÞ ¼ 2pi=Ec:m:,
and the known volume-dependent functions M [3,4,14].
Given knowledge of the energy dependence of the scatter-
ing amplitudes tðJÞij ðEc:m:Þ, one can solve this equation for a
discrete spectrum of states fEc:m:g. The practical problem
at hand, however, is the reverse of this: to find the t matrix
given a lattice QCD calculation of the spectrum. For any
single energy level value Ec:m:, this is an underconstrained
problem, as there are multiple elements of the tmatrix to be
determined from only one condition.
The approach we will take is to parametrize the energy

dependence of the t matrix and describe the spectrum as a
whole. Such an approach was explored in the context of a
toy model of coupled-channel scattering in Ref. [3]. A
flexible K-matrix parametrization of partial-wave J, in
terms of the variable s ¼ E2

c:m:, can be constructed that
ensures the unitarity of the S matrix,

t−1ij ðsÞ ¼
1

ð2piÞJ
K−1

ij ðsÞ
1

ð2pjÞJ
þ IijðsÞ;

KijðsÞ ¼
X

p

gðpÞi gðpÞj

m2
p − s

þ
X

n

γðnÞij sn;

where we may choose how many poles and what
order polynomial to include in K, with real parameters
gðpÞi , mp, γ

ðnÞ
ij . The function IðsÞ must be chosen such that

ImIijðsÞ ¼ −δijρiðsÞ above threshold to ensure unitarity is
preserved. There is some freedom in the choice of the
real part; we choose an implementation of the Chew-
Mandelstam form [3], which has smooth behavior across
kinematic thresholds.
We use 80 levels from 20 irreps to constrain the 0þ

amplitudes from slightly below πK threshold up to
1650 MeV, 19 levels to constrain the 1− amplitude in
the region around the πK threshold, and a further 24 levels
to constrain the 2þ amplitudes between 1250 and
1700 MeV. The 0þ, 2þ partial waves are described by a
single K-matrix pole coupled to both πK and ηK plus a
constant matrix, while the πK threshold region in 1− is
described by a relativistic Breit-Wigner form. We assume
that the influence of partial waves J ≥ 3 is negligible in this
energy region.
The resulting t matrices are plotted in Fig. 2. For

0þ, 2þ, πK and ηK phase shifts and an inelasticity, defined
in tii ¼ ðηe2iδi − 1Þ=ð2iρiÞ, tij ¼ ½

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
eiðδiþδjÞ%=

ð2 ffiffiffiffiffiffiffiffiρiρj
p Þ, for channels i ¼ πK, ηK, are shown, while

for 1− we plot the function p3 cot δ, which is real and
continuous across the πK threshold. In each case, we
present the χ2=Ndof for the parameterized description of the
input spectrum, which we find to be quite acceptable.
The points shown in the center of Fig. 2(a), which cover

the whole energy region plotted, indicate that we are
strongly constraining the energy dependence of the ampli-
tudes; in particular, note that the low-energy behavior of the
0þ πK amplitude is constrained by points at or below
threshold. Similarly, in Fig. 2(c), the energy dependence of
the 2þ amplitude is well sampled in the region of the rapid
rise of the phase shift. This region is above the ππK
threshold, which can, in principle, couple to the 2þ partial-
wave—we have assumed here that there is negligible
coupling to this channel.
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FIG. 2 (color online). (a) JP ¼ 0þ amplitudes. Open circles on axis show πK and ηK thresholds. Upper panel: πK and ηK phase shifts
in degrees. Lower panel: inelasticity. Points in center show the energy levels on three volumes used to constrain the t-matrix extraction;
larger solid points show ~P ¼ ~0, and smaller open circles show ~P ≠ ~0. (b) JP ¼ 1− around the πK threshold. Points determined directly
without parametrization of the vector amplitude from three volumes: 163 (boxes), 203 (circles), and 243 (triangles). Curve shows the
result of a relativistic Breit-Wigner parametrization p3 cot δ1 ¼ ðm2

R − sÞ½ð6π
ffiffiffi
s

p
Þ=g2R%. (c) JP ¼ 2þ amplitudes. Open circles on axis

show πK, ηK, and ππK thresholds.

PRL 113, 182001 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

31 OCTOBER 2014

182001-3

mK⇤ < mK +m⇡



K + π , I=1/2, S,D-wave
HSC coll., PRL113(2014)182001; PRD91(2015)054008. 

m⇡ = 391MeV

Scattering amplitudes.—For an interacting quantum field
theory, the relationship between the discrete spectrum of
states in an L × L × L volume, in a frame moving with
momentum ~P, for irrep Λ, can be written in a simplified
form as

det½δijδJJ0 þ iρi t
ðJÞ
ij ðEc:m:Þ(δJJ0 þ iM~PΛ

JJ0ðpiLÞ)% ¼ 0;

where the scattering t matrix for partial-wave J appears
along with the phase space in channel i, ρiðsÞ ¼ 2pi=Ec:m:,
and the known volume-dependent functions M [3,4,14].
Given knowledge of the energy dependence of the scatter-
ing amplitudes tðJÞij ðEc:m:Þ, one can solve this equation for a
discrete spectrum of states fEc:m:g. The practical problem
at hand, however, is the reverse of this: to find the t matrix
given a lattice QCD calculation of the spectrum. For any
single energy level value Ec:m:, this is an underconstrained
problem, as there are multiple elements of the tmatrix to be
determined from only one condition.
The approach we will take is to parametrize the energy

dependence of the t matrix and describe the spectrum as a
whole. Such an approach was explored in the context of a
toy model of coupled-channel scattering in Ref. [3]. A
flexible K-matrix parametrization of partial-wave J, in
terms of the variable s ¼ E2

c:m:, can be constructed that
ensures the unitarity of the S matrix,

t−1ij ðsÞ ¼
1

ð2piÞJ
K−1

ij ðsÞ
1

ð2pjÞJ
þ IijðsÞ;

KijðsÞ ¼
X

p

gðpÞi gðpÞj

m2
p − s

þ
X

n

γðnÞij sn;

where we may choose how many poles and what
order polynomial to include in K, with real parameters
gðpÞi , mp, γ

ðnÞ
ij . The function IðsÞ must be chosen such that

ImIijðsÞ ¼ −δijρiðsÞ above threshold to ensure unitarity is
preserved. There is some freedom in the choice of the
real part; we choose an implementation of the Chew-
Mandelstam form [3], which has smooth behavior across
kinematic thresholds.
We use 80 levels from 20 irreps to constrain the 0þ

amplitudes from slightly below πK threshold up to
1650 MeV, 19 levels to constrain the 1− amplitude in
the region around the πK threshold, and a further 24 levels
to constrain the 2þ amplitudes between 1250 and
1700 MeV. The 0þ, 2þ partial waves are described by a
single K-matrix pole coupled to both πK and ηK plus a
constant matrix, while the πK threshold region in 1− is
described by a relativistic Breit-Wigner form. We assume
that the influence of partial waves J ≥ 3 is negligible in this
energy region.
The resulting t matrices are plotted in Fig. 2. For

0þ, 2þ, πK and ηK phase shifts and an inelasticity, defined
in tii ¼ ðηe2iδi − 1Þ=ð2iρiÞ, tij ¼ ½

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
eiðδiþδjÞ%=

ð2 ffiffiffiffiffiffiffiffiρiρj
p Þ, for channels i ¼ πK, ηK, are shown, while

for 1− we plot the function p3 cot δ, which is real and
continuous across the πK threshold. In each case, we
present the χ2=Ndof for the parameterized description of the
input spectrum, which we find to be quite acceptable.
The points shown in the center of Fig. 2(a), which cover

the whole energy region plotted, indicate that we are
strongly constraining the energy dependence of the ampli-
tudes; in particular, note that the low-energy behavior of the
0þ πK amplitude is constrained by points at or below
threshold. Similarly, in Fig. 2(c), the energy dependence of
the 2þ amplitude is well sampled in the region of the rapid
rise of the phase shift. This region is above the ππK
threshold, which can, in principle, couple to the 2þ partial-
wave—we have assumed here that there is negligible
coupling to this channel.
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FIG. 2 (color online). (a) JP ¼ 0þ amplitudes. Open circles on axis show πK and ηK thresholds. Upper panel: πK and ηK phase shifts
in degrees. Lower panel: inelasticity. Points in center show the energy levels on three volumes used to constrain the t-matrix extraction;
larger solid points show ~P ¼ ~0, and smaller open circles show ~P ≠ ~0. (b) JP ¼ 1− around the πK threshold. Points determined directly
without parametrization of the vector amplitude from three volumes: 163 (boxes), 203 (circles), and 243 (triangles). Curve shows the
result of a relativistic Breit-Wigner parametrization p3 cot δ1 ¼ ðm2

R − sÞ½ð6π
ffiffiffi
s

p
Þ=g2R%. (c) JP ¼ 2þ amplitudes. Open circles on axis

show πK, ηK, and ππK thresholds.
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Scattering amplitudes.—For an interacting quantum field
theory, the relationship between the discrete spectrum of
states in an L × L × L volume, in a frame moving with
momentum ~P, for irrep Λ, can be written in a simplified
form as

det½δijδJJ0 þ iρi t
ðJÞ
ij ðEc:m:Þ(δJJ0 þ iM~PΛ

JJ0ðpiLÞ)% ¼ 0;

where the scattering t matrix for partial-wave J appears
along with the phase space in channel i, ρiðsÞ ¼ 2pi=Ec:m:,
and the known volume-dependent functions M [3,4,14].
Given knowledge of the energy dependence of the scatter-
ing amplitudes tðJÞij ðEc:m:Þ, one can solve this equation for a
discrete spectrum of states fEc:m:g. The practical problem
at hand, however, is the reverse of this: to find the t matrix
given a lattice QCD calculation of the spectrum. For any
single energy level value Ec:m:, this is an underconstrained
problem, as there are multiple elements of the tmatrix to be
determined from only one condition.
The approach we will take is to parametrize the energy

dependence of the t matrix and describe the spectrum as a
whole. Such an approach was explored in the context of a
toy model of coupled-channel scattering in Ref. [3]. A
flexible K-matrix parametrization of partial-wave J, in
terms of the variable s ¼ E2

c:m:, can be constructed that
ensures the unitarity of the S matrix,

t−1ij ðsÞ ¼
1

ð2piÞJ
K−1

ij ðsÞ
1

ð2pjÞJ
þ IijðsÞ;

KijðsÞ ¼
X

p

gðpÞi gðpÞj

m2
p − s

þ
X

n

γðnÞij sn;

where we may choose how many poles and what
order polynomial to include in K, with real parameters
gðpÞi , mp, γ

ðnÞ
ij . The function IðsÞ must be chosen such that

ImIijðsÞ ¼ −δijρiðsÞ above threshold to ensure unitarity is
preserved. There is some freedom in the choice of the
real part; we choose an implementation of the Chew-
Mandelstam form [3], which has smooth behavior across
kinematic thresholds.
We use 80 levels from 20 irreps to constrain the 0þ

amplitudes from slightly below πK threshold up to
1650 MeV, 19 levels to constrain the 1− amplitude in
the region around the πK threshold, and a further 24 levels
to constrain the 2þ amplitudes between 1250 and
1700 MeV. The 0þ, 2þ partial waves are described by a
single K-matrix pole coupled to both πK and ηK plus a
constant matrix, while the πK threshold region in 1− is
described by a relativistic Breit-Wigner form. We assume
that the influence of partial waves J ≥ 3 is negligible in this
energy region.
The resulting t matrices are plotted in Fig. 2. For

0þ, 2þ, πK and ηK phase shifts and an inelasticity, defined
in tii ¼ ðηe2iδi − 1Þ=ð2iρiÞ, tij ¼ ½

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
eiðδiþδjÞ%=

ð2 ffiffiffiffiffiffiffiffiρiρj
p Þ, for channels i ¼ πK, ηK, are shown, while

for 1− we plot the function p3 cot δ, which is real and
continuous across the πK threshold. In each case, we
present the χ2=Ndof for the parameterized description of the
input spectrum, which we find to be quite acceptable.
The points shown in the center of Fig. 2(a), which cover

the whole energy region plotted, indicate that we are
strongly constraining the energy dependence of the ampli-
tudes; in particular, note that the low-energy behavior of the
0þ πK amplitude is constrained by points at or below
threshold. Similarly, in Fig. 2(c), the energy dependence of
the 2þ amplitude is well sampled in the region of the rapid
rise of the phase shift. This region is above the ππK
threshold, which can, in principle, couple to the 2þ partial-
wave—we have assumed here that there is negligible
coupling to this channel.

-30

 0

 30

 60

 90

 120

 150

 180

 1000  1200  1400  1600

0.7
0.8
0.9
1.0  1000  1200  1400  1600

-0.02

-0.01

0

0.01

0.02

 910  920  930  940  950  960

-30

 0

 30

 60

 90

 120

 150

 180

 1000  1200  1400  1600

0.7
0.8
0.9
1.0  1000  1200  1400  1600

(a) (b) (c)

FIG. 2 (color online). (a) JP ¼ 0þ amplitudes. Open circles on axis show πK and ηK thresholds. Upper panel: πK and ηK phase shifts
in degrees. Lower panel: inelasticity. Points in center show the energy levels on three volumes used to constrain the t-matrix extraction;
larger solid points show ~P ¼ ~0, and smaller open circles show ~P ≠ ~0. (b) JP ¼ 1− around the πK threshold. Points determined directly
without parametrization of the vector amplitude from three volumes: 163 (boxes), 203 (circles), and 243 (triangles). Curve shows the
result of a relativistic Breit-Wigner parametrization p3 cot δ1 ¼ ðm2

R − sÞ½ð6π
ffiffiffi
s

p
Þ=g2R%. (c) JP ¼ 2þ amplitudes. Open circles on axis

show πK, ηK, and ππK thresholds.
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Scattering amplitudes.—For an interacting quantum field
theory, the relationship between the discrete spectrum of
states in an L × L × L volume, in a frame moving with
momentum ~P, for irrep Λ, can be written in a simplified
form as

det½δijδJJ0 þ iρi t
ðJÞ
ij ðEc:m:Þ(δJJ0 þ iM~PΛ

JJ0ðpiLÞ)% ¼ 0;

where the scattering t matrix for partial-wave J appears
along with the phase space in channel i, ρiðsÞ ¼ 2pi=Ec:m:,
and the known volume-dependent functions M [3,4,14].
Given knowledge of the energy dependence of the scatter-
ing amplitudes tðJÞij ðEc:m:Þ, one can solve this equation for a
discrete spectrum of states fEc:m:g. The practical problem
at hand, however, is the reverse of this: to find the t matrix
given a lattice QCD calculation of the spectrum. For any
single energy level value Ec:m:, this is an underconstrained
problem, as there are multiple elements of the tmatrix to be
determined from only one condition.
The approach we will take is to parametrize the energy

dependence of the t matrix and describe the spectrum as a
whole. Such an approach was explored in the context of a
toy model of coupled-channel scattering in Ref. [3]. A
flexible K-matrix parametrization of partial-wave J, in
terms of the variable s ¼ E2

c:m:, can be constructed that
ensures the unitarity of the S matrix,

t−1ij ðsÞ ¼
1

ð2piÞJ
K−1

ij ðsÞ
1

ð2pjÞJ
þ IijðsÞ;

KijðsÞ ¼
X

p

gðpÞi gðpÞj

m2
p − s

þ
X

n

γðnÞij sn;

where we may choose how many poles and what
order polynomial to include in K, with real parameters
gðpÞi , mp, γ

ðnÞ
ij . The function IðsÞ must be chosen such that

ImIijðsÞ ¼ −δijρiðsÞ above threshold to ensure unitarity is
preserved. There is some freedom in the choice of the
real part; we choose an implementation of the Chew-
Mandelstam form [3], which has smooth behavior across
kinematic thresholds.
We use 80 levels from 20 irreps to constrain the 0þ

amplitudes from slightly below πK threshold up to
1650 MeV, 19 levels to constrain the 1− amplitude in
the region around the πK threshold, and a further 24 levels
to constrain the 2þ amplitudes between 1250 and
1700 MeV. The 0þ, 2þ partial waves are described by a
single K-matrix pole coupled to both πK and ηK plus a
constant matrix, while the πK threshold region in 1− is
described by a relativistic Breit-Wigner form. We assume
that the influence of partial waves J ≥ 3 is negligible in this
energy region.
The resulting t matrices are plotted in Fig. 2. For

0þ, 2þ, πK and ηK phase shifts and an inelasticity, defined
in tii ¼ ðηe2iδi − 1Þ=ð2iρiÞ, tij ¼ ½

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
eiðδiþδjÞ%=

ð2 ffiffiffiffiffiffiffiffiρiρj
p Þ, for channels i ¼ πK, ηK, are shown, while

for 1− we plot the function p3 cot δ, which is real and
continuous across the πK threshold. In each case, we
present the χ2=Ndof for the parameterized description of the
input spectrum, which we find to be quite acceptable.
The points shown in the center of Fig. 2(a), which cover

the whole energy region plotted, indicate that we are
strongly constraining the energy dependence of the ampli-
tudes; in particular, note that the low-energy behavior of the
0þ πK amplitude is constrained by points at or below
threshold. Similarly, in Fig. 2(c), the energy dependence of
the 2þ amplitude is well sampled in the region of the rapid
rise of the phase shift. This region is above the ππK
threshold, which can, in principle, couple to the 2þ partial-
wave—we have assumed here that there is negligible
coupling to this channel.
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FIG. 2 (color online). (a) JP ¼ 0þ amplitudes. Open circles on axis show πK and ηK thresholds. Upper panel: πK and ηK phase shifts
in degrees. Lower panel: inelasticity. Points in center show the energy levels on three volumes used to constrain the t-matrix extraction;
larger solid points show ~P ¼ ~0, and smaller open circles show ~P ≠ ~0. (b) JP ¼ 1− around the πK threshold. Points determined directly
without parametrization of the vector amplitude from three volumes: 163 (boxes), 203 (circles), and 243 (triangles). Curve shows the
result of a relativistic Breit-Wigner parametrization p3 cot δ1 ¼ ðm2

R − sÞ½ð6π
ffiffiffi
s

p
Þ=g2R%. (c) JP ¼ 2þ amplitudes. Open circles on axis

show πK, ηK, and ππK thresholds.
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Scattering amplitudes.—For an interacting quantum field
theory, the relationship between the discrete spectrum of
states in an L × L × L volume, in a frame moving with
momentum ~P, for irrep Λ, can be written in a simplified
form as

det½δijδJJ0 þ iρi t
ðJÞ
ij ðEc:m:Þ(δJJ0 þ iM~PΛ

JJ0ðpiLÞ)% ¼ 0;

where the scattering t matrix for partial-wave J appears
along with the phase space in channel i, ρiðsÞ ¼ 2pi=Ec:m:,
and the known volume-dependent functions M [3,4,14].
Given knowledge of the energy dependence of the scatter-
ing amplitudes tðJÞij ðEc:m:Þ, one can solve this equation for a
discrete spectrum of states fEc:m:g. The practical problem
at hand, however, is the reverse of this: to find the t matrix
given a lattice QCD calculation of the spectrum. For any
single energy level value Ec:m:, this is an underconstrained
problem, as there are multiple elements of the tmatrix to be
determined from only one condition.
The approach we will take is to parametrize the energy

dependence of the t matrix and describe the spectrum as a
whole. Such an approach was explored in the context of a
toy model of coupled-channel scattering in Ref. [3]. A
flexible K-matrix parametrization of partial-wave J, in
terms of the variable s ¼ E2

c:m:, can be constructed that
ensures the unitarity of the S matrix,

t−1ij ðsÞ ¼
1

ð2piÞJ
K−1

ij ðsÞ
1

ð2pjÞJ
þ IijðsÞ;

KijðsÞ ¼
X

p

gðpÞi gðpÞj

m2
p − s

þ
X

n

γðnÞij sn;

where we may choose how many poles and what
order polynomial to include in K, with real parameters
gðpÞi , mp, γ

ðnÞ
ij . The function IðsÞ must be chosen such that

ImIijðsÞ ¼ −δijρiðsÞ above threshold to ensure unitarity is
preserved. There is some freedom in the choice of the
real part; we choose an implementation of the Chew-
Mandelstam form [3], which has smooth behavior across
kinematic thresholds.
We use 80 levels from 20 irreps to constrain the 0þ

amplitudes from slightly below πK threshold up to
1650 MeV, 19 levels to constrain the 1− amplitude in
the region around the πK threshold, and a further 24 levels
to constrain the 2þ amplitudes between 1250 and
1700 MeV. The 0þ, 2þ partial waves are described by a
single K-matrix pole coupled to both πK and ηK plus a
constant matrix, while the πK threshold region in 1− is
described by a relativistic Breit-Wigner form. We assume
that the influence of partial waves J ≥ 3 is negligible in this
energy region.
The resulting t matrices are plotted in Fig. 2. For

0þ, 2þ, πK and ηK phase shifts and an inelasticity, defined
in tii ¼ ðηe2iδi − 1Þ=ð2iρiÞ, tij ¼ ½

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
eiðδiþδjÞ%=

ð2 ffiffiffiffiffiffiffiffiρiρj
p Þ, for channels i ¼ πK, ηK, are shown, while

for 1− we plot the function p3 cot δ, which is real and
continuous across the πK threshold. In each case, we
present the χ2=Ndof for the parameterized description of the
input spectrum, which we find to be quite acceptable.
The points shown in the center of Fig. 2(a), which cover

the whole energy region plotted, indicate that we are
strongly constraining the energy dependence of the ampli-
tudes; in particular, note that the low-energy behavior of the
0þ πK amplitude is constrained by points at or below
threshold. Similarly, in Fig. 2(c), the energy dependence of
the 2þ amplitude is well sampled in the region of the rapid
rise of the phase shift. This region is above the ππK
threshold, which can, in principle, couple to the 2þ partial-
wave—we have assumed here that there is negligible
coupling to this channel.
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FIG. 2 (color online). (a) JP ¼ 0þ amplitudes. Open circles on axis show πK and ηK thresholds. Upper panel: πK and ηK phase shifts
in degrees. Lower panel: inelasticity. Points in center show the energy levels on three volumes used to constrain the t-matrix extraction;
larger solid points show ~P ¼ ~0, and smaller open circles show ~P ≠ ~0. (b) JP ¼ 1− around the πK threshold. Points determined directly
without parametrization of the vector amplitude from three volumes: 163 (boxes), 203 (circles), and 243 (triangles). Curve shows the
result of a relativistic Breit-Wigner parametrization p3 cot δ1 ¼ ðm2

R − sÞ½ð6π
ffiffiffi
s

p
Þ=g2R%. (c) JP ¼ 2þ amplitudes. Open circles on axis

show πK, ηK, and ππK thresholds.
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Scattering amplitudes.—For an interacting quantum field
theory, the relationship between the discrete spectrum of
states in an L × L × L volume, in a frame moving with
momentum ~P, for irrep Λ, can be written in a simplified
form as

det½δijδJJ0 þ iρi t
ðJÞ
ij ðEc:m:Þ(δJJ0 þ iM~PΛ

JJ0ðpiLÞ)% ¼ 0;

where the scattering t matrix for partial-wave J appears
along with the phase space in channel i, ρiðsÞ ¼ 2pi=Ec:m:,
and the known volume-dependent functions M [3,4,14].
Given knowledge of the energy dependence of the scatter-
ing amplitudes tðJÞij ðEc:m:Þ, one can solve this equation for a
discrete spectrum of states fEc:m:g. The practical problem
at hand, however, is the reverse of this: to find the t matrix
given a lattice QCD calculation of the spectrum. For any
single energy level value Ec:m:, this is an underconstrained
problem, as there are multiple elements of the tmatrix to be
determined from only one condition.
The approach we will take is to parametrize the energy

dependence of the t matrix and describe the spectrum as a
whole. Such an approach was explored in the context of a
toy model of coupled-channel scattering in Ref. [3]. A
flexible K-matrix parametrization of partial-wave J, in
terms of the variable s ¼ E2

c:m:, can be constructed that
ensures the unitarity of the S matrix,

t−1ij ðsÞ ¼
1

ð2piÞJ
K−1

ij ðsÞ
1

ð2pjÞJ
þ IijðsÞ;

KijðsÞ ¼
X

p

gðpÞi gðpÞj

m2
p − s

þ
X

n

γðnÞij sn;

where we may choose how many poles and what
order polynomial to include in K, with real parameters
gðpÞi , mp, γ

ðnÞ
ij . The function IðsÞ must be chosen such that

ImIijðsÞ ¼ −δijρiðsÞ above threshold to ensure unitarity is
preserved. There is some freedom in the choice of the
real part; we choose an implementation of the Chew-
Mandelstam form [3], which has smooth behavior across
kinematic thresholds.
We use 80 levels from 20 irreps to constrain the 0þ

amplitudes from slightly below πK threshold up to
1650 MeV, 19 levels to constrain the 1− amplitude in
the region around the πK threshold, and a further 24 levels
to constrain the 2þ amplitudes between 1250 and
1700 MeV. The 0þ, 2þ partial waves are described by a
single K-matrix pole coupled to both πK and ηK plus a
constant matrix, while the πK threshold region in 1− is
described by a relativistic Breit-Wigner form. We assume
that the influence of partial waves J ≥ 3 is negligible in this
energy region.
The resulting t matrices are plotted in Fig. 2. For

0þ, 2þ, πK and ηK phase shifts and an inelasticity, defined
in tii ¼ ðηe2iδi − 1Þ=ð2iρiÞ, tij ¼ ½

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
eiðδiþδjÞ%=

ð2 ffiffiffiffiffiffiffiffiρiρj
p Þ, for channels i ¼ πK, ηK, are shown, while

for 1− we plot the function p3 cot δ, which is real and
continuous across the πK threshold. In each case, we
present the χ2=Ndof for the parameterized description of the
input spectrum, which we find to be quite acceptable.
The points shown in the center of Fig. 2(a), which cover

the whole energy region plotted, indicate that we are
strongly constraining the energy dependence of the ampli-
tudes; in particular, note that the low-energy behavior of the
0þ πK amplitude is constrained by points at or below
threshold. Similarly, in Fig. 2(c), the energy dependence of
the 2þ amplitude is well sampled in the region of the rapid
rise of the phase shift. This region is above the ππK
threshold, which can, in principle, couple to the 2þ partial-
wave—we have assumed here that there is negligible
coupling to this channel.
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FIG. 2 (color online). (a) JP ¼ 0þ amplitudes. Open circles on axis show πK and ηK thresholds. Upper panel: πK and ηK phase shifts
in degrees. Lower panel: inelasticity. Points in center show the energy levels on three volumes used to constrain the t-matrix extraction;
larger solid points show ~P ¼ ~0, and smaller open circles show ~P ≠ ~0. (b) JP ¼ 1− around the πK threshold. Points determined directly
without parametrization of the vector amplitude from three volumes: 163 (boxes), 203 (circles), and 243 (triangles). Curve shows the
result of a relativistic Breit-Wigner parametrization p3 cot δ1 ¼ ðm2

R − sÞ½ð6π
ffiffiffi
s

p
Þ=g2R%. (c) JP ¼ 2þ amplitudes. Open circles on axis

show πK, ηK, and ππK thresholds.
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quark mass is too large.
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X(3872)

tuning the spin-averaged kinetic mass 1
4 ðm!c

þ 3mJ=c Þ to
its physical value [11]. We employed the same method on
this ensemble and found good agreement with experiment
for conventional charmonium spectrum as well as
masses and widths of charmed mesons in Ref. [11].
The present study also needs the following masses for
our ensemble: amD ¼ 0:9801ð10Þ, amD% ¼ 1:0629ð13Þ,
am!c

¼ 1:473 92ð31Þ, amJ=c ¼ 1:541 71ð43Þ [11],
am" ¼ 0:5107ð40Þ, and m! ’ m" within errors.

The energy levels En and overlaps Zn
i & hOijni of

eigenstates n are extracted from the correlation matrix

CijðtÞ ¼ hOy
i ðtþ tsrcÞjOjðtsrcÞi ¼

X

n

Zn
i Z

n%
j e'Ent; (1)

which are averaged over every second tsrc. We choose
interpolating fields Oi that couple well to !cc as well as
the scattering states to study the system with total momen-
tum zero, I ¼ 0 or I ¼ 1, and JPC ¼ 1þþ (we employ
irreducible representation Tþþ

1 of the lattice symmetry
group Oh, which contains JPC ¼ 1þþ and in general also
JPC ( 3þþ states, but those are at least 200 MeV above
the region of interest [11])

O !cc
1'8¼ !cM̂icð0Þ; ðonly I¼0Þ

ODD%
1 ¼½ !c#5uð0Þ !u#icð0Þ' !c#iuð0Þ !u#5cð0Þ*þfIfu!dg;

ODD%
2 ¼½ !c#5#tuð0Þ !u#i#tcð0Þ' !c#i#tuð0Þ !u#5#tcð0Þ*

þfIfu!dg;
ODD%

3 ¼
X

ek¼+ex;y;z

½ !c#5uðekÞ !u#icð'ekÞ

' !c#iuðekÞ !u#5cð'ekÞ*þfIfu!dg;
OJ=cV

1 ¼$ijk !c#jcð0Þ½ !u#kuð0ÞþfI !d#kdð0Þ*;
OJ=cV

2 ¼$ijk !c#j#tcð0Þ½ !u#k#tuð0ÞþfI !d#k#tdð0Þ*; (2)

where fI ¼ 1 and V ¼ ! for I ¼ 0, while fI ¼ '1 and
V ¼ " for I ¼ 1. Eight O !cc are listed in Table X of
Ref. [11] and polarization i ¼ x is used. Momenta are
projected separately for each meson current: !q1"q2ðnÞ &P

xe
i2%nx=Lq1ðx; tÞ"q2ðx; tÞ All quark fields are smeared

q & PNv
k¼1 v

ðkÞvðkÞyqpoint [11,22] with Nv ¼ 96 Laplacian

eigenvectors for O !cc, ODD%
1 , OJ=cV

1 , and Nv ¼ 64 for the
remaining three. The energy of J=c ð1ÞVð'1Þ is expected

FIG. 1 (color online). Upper
figure: symbols represent En '
1
4 ðm!c

þ 3mJ=c Þ in the plateau

region, where En are energies of
the eigenstates n in the JPC ¼ 1þþ

channel (n ¼ 1; 2; . . . starting
from the lowest state). The choice
of the interpolator basis [Eq. (2)]
is indicated above each plot.
Dashed lines represent energies
En:i: of the noninteracting scatter-
ing states. Lower figure: overlaps
hOijni of eigenstates n (from the
upper figure) with interpolators
Oi, all normalized to hO !cc

1 jni.
Note that all hODD%;J=c!

i jni=
hO !cc

1 jni depend on one (arbitrary)
choice for the normalization of the
current !q1"q2ðnÞ with a given
quark smearing. The plotted ratios
correspond to choice presented in
the main text.
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find another 1þþ state nearby. Our results therefore allow
the possibility for interpreting Xð3872Þ as !c1ð2PÞ ¼ !cc
accidentally aligned with D !D% threshold.

We find !c1ð1PÞ but no candidate for Xð3872Þ in I ¼ 0
channel if the interpolator basis consists only of five scat-
tering interpolators [Fig. 1(d)]. Perhaps this can be under-
stood if Xð3872Þ is a consequence of accidental alignment
of the c !c state withD !D% threshold, which may be absent in
practice if O !cc are not explicitly incorporated.

The phase shifts "ðpÞ for the s-wave D !D% scattering are
extracted using the well-established and rigorous Lüscher’s
relation [29],

p & cot"ðpÞ ¼ 2Z00ð1;q2Þffiffiffiffi
#

p
L

; q2 '
"
L

2#

#
2
p2; (4)

which applies for elastic scattering below and above
threshold. The D and !D% momentum p is extracted
from En ¼ EDðpÞ þ ED% ðpÞ using dispersion relations
ED;D% ðpÞ [11] and En¼2;3 from Fig. 1(b) and Table I.
These energies result from correlation matrix with O !cc,
ODD%

but without OJ=c!, so we expect that the effect of
the J=c! is negligible. This is confirmed by comparing
Figs. 1(a) and 1(b).

The resulting p cot" in Table I for p2 slightly below and
above threshold can be described by the effective range
approximation for D !D% scattering in s wave,

p cot"ðpÞ ¼ 1

aDD%
0

þ 1

2
rDD%
0 p2: (5)

Inserting p cot"ðpÞ and p2 for levels n ¼ 2; 3 to Eq. (5),
we get two relations which render the ðD !D%ÞI¼0 scattering
length and the effective range at our m# ’ 266 MeV,

aDD%
0 ¼ (1:7) 0:4 fm; rDD%

0 ¼ 0:5) 0:1 fm: (6)

The infinite volume D !D% bound state (BS) appears
where S matrix, S / ðcot"ðpÞ ( iÞ(1, has a pole, so for
the value of p2

BS < 0 where cot"ðpBSÞ ¼ i. The D !D%

bound state Xð3872Þ appears near threshold, so we deter-
mine the binding momentum p2

BS ¼ (0:020ð13Þ GeV2

which corresponds to cot"ðpBSÞ ¼ i from the effective
range approximation [Eq. (5)] and the parameters
[Eq. (6)]. This binding momentum then renders the posi-
tion of the bound state Xð3872Þ in the infinite volume via
mlat

X ðL ! 1Þ ¼ EDðpBSÞ þ ED% ðpBSÞ and the resulting
mass in Table II is rather close to the experimental value.

We usedDð%Þ masses and dispersion relations EDð%Þ ðpÞ from
Ref. [11], where they are extracted for employed
configurations.
The errors correspond to statistical errors based on

single-elimination jackknife. The largest systematic uncer-
tainty is expected from the finite volume corrections and
we estimate that mX on the DD% threshold is also allowed
within our systematic errors, while mX above threshold is
not supported due to aDD%

0 < 0 [Eq. (6)]. Simulations on
larger volumes will have to be performed to get more
reliable result for mX (mD (mD% , and the prospects
are discussed in the Supplemental Material [23]. The
variation of mX with m# ¼ ½140; 266+ MeV is within this
uncertainty according to the analytic study based on the
molecular picture [31].
Concerning the composition of our candidate for

Xð3872Þ, Figure 1 shows its representative overlaps
hOijn ¼ 2i. It has particularly sizable overlaps with !cc
and Dð0Þ !D%ð0Þ interpolators, and has nonvanishing over-
laps with the remaining ones. Note that the aim of the
present Letter was not to choose between most popular
interpretations ( !cc state accidentally aligned with DD%

threshold or D !D% molecule, etc.), but rather to find a
candidate for Xð3872Þ on the lattice and determine its
mass.
In conclusion, a candidate for Xð3872Þ is found 11)

7 MeV below theD !D% threshold using two-flavor dynami-
cal lattice simulation with JPC ¼ 1þþ and I ¼ 0. In the
simulation, the Xð3872Þ appears in addition to the nearby
D !D% and J=c! discrete scattering states, and we extract
large and negative D !D% scattering length. We do not find a
candidate for Xð3872Þ in the I ¼ 1 channel, which may be
related to the exact isospin in our simulation.
We thank Anna Hasenfratz for providing the gauge

configurations and D. Mohler for providing the perambu-
lators. We are grateful to D. Mohler, E. Oset, A. Rusetsky,
M. Savage, and, in particular, to C. B. Lang for insightful

TABLE I. The energies extracted from the one-exponential correlated fit of the 6, 6CijðtÞ
based on O !cc

1;3;5, O
DD%
1;2;3, and t0 ¼ 2. The p denotes D and D% momentum and "ðpÞ denotes their

scattering phase shift.

Level n Fit t En ( 1
4 ðm$c

þ 3mJ=c Þ [MeV] p2 [GeV2] p & cot"ðpÞ [GeV]
1 6–11 429(3)

2 8–11 785(8) (0:075ð15Þ (0:21ð5Þ
3 6–9 946(11) 0.231(22) 0.17(9)
4 7–10 1028(18)

TABLE II. mXð3872Þ from lattice and experiment [1,30].

Xð3872Þ mX ( 1
4 ðm$c

þ 3mJ=c Þ mX ( ðmD0 þmD0% Þ
LatticeL!1 815) 7 MeV (11) 7 MeV
Experiment 804) 1 MeV (0:14) 0:22 MeV
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( assuming width is narrow )

one additional state is found
                        in I=0 system  

corresponding to X(3872)

m⇡ = 266MeV

op = c̄c , DD⇤ , J/ V ( JPC = 1++ )

log(�n(t)/�n(t+ 1)) ⇠ En
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This applies also for hO4qðtÞjO4qð0Þi ∝ e−ðmJ=ψþmπÞt at
large t, as shown in Fig. 3(g). Looking at the ground state
of the diquark-antidiquark correlators alone, one cannot
reach conclusions regarding Zþ

c . This holds also for the
ground states fromODD$

(used in [17]) orOD$D$
correlators

alone. The coupling to J=ψπ, ηcρ (and possibly some
others) has to be taken into account, as shown by our study.
These cautionary remarks also apply to QCD sum-rule
studies that are based on correlators.

B. Reduced interpolator basis

Here we show an example why the Zþ
c candidate is not

reliable as long as not all two-meson states with lower
energy values and at least one nearby state with higher
energy have been established. We illustrate that by a
simulation [41] that aims at extracting nine two-meson
states J=ψð0Þπð0Þ, ηcð0Þρð0Þ, J=ψð1Þπð−1Þ, Dð0ÞD̄$ð0Þ,
ψ2Sð0Þπð0Þ, D$ð0ÞD̄$ð0Þ, ψ1Dð0Þπð0Þ, Dð1ÞD̄$ð−1Þ,
ψ3ð0Þπð0Þ using a correspondingly chosen interpolator
basis [numbered according to (A1)]

O1−9;11;13−15;17;19−22 ð7Þ

which should suffice for the extraction of the mentioned
nine two-meson states and possibly an additional exotic
candidate.
The spectrum in Fig. 3(b) and overlaps in Fig. 6 show

that the lowest nine states (indicated by black circles) are

two-meson states. When either one of ODð0ÞD$ð0Þ,
ODð1ÞD$ð−1Þ, or OD$ð0ÞD$ð0Þ is omitted from the correlator
matrix, the corresponding two-particle level disappears
from the spectrum [Figs. 3(d)–3(f)].
The state n ¼ 10 at E≃ 4.16 GeV (shown in green) is

an extra state and it has large overlap with diquark-
antidiquark interpolators in Fig. 3. Figure 6 shows that
this state disappears from the spectrum if O4q are omitted
from the basis (7), so the O4q Fock component seems to be
crucial for its existence. We also verified that the energy of
the extra state is rather stable under different choices of
OMM among (7), as long as the O4q are kept in the basis.
This led to the premature conclusion [41] that an extra level
n ¼ 10 could be related to a Zþ

c candidate.
The results in Sec. IV from the complete interpolator basis

(A1), which incorporate also two-meson states in the region
between 4.2 and 4.3 GeV, do not show an additional state
near 4.16 GeV. Furthermore, the complete basis renders an
additional state at higher energy E≃ 4.39 GeV; therefore,
the state from Fig. 3 at E≃ 4.16 GeV is not a reliable
candidate.
In fact, the appearance of an additional state close to the

energy region of the first omitted two-meson states in
Figs. 1 and 3 seems to indicate that such an additional state
may be related to (a linear combination of) omitted two-
meson states via O4q. This is not surprising as ½c̄ d̄'3c ½cu'3̄c
contains a linear combination of various M1ðkÞM2ð−kÞ
after the Fierz rearrangement. In light of this, it is puzzling
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This applies also for hO4qðtÞjO4qð0Þi ∝ e−ðmJ=ψþmπÞt at
large t, as shown in Fig. 3(g). Looking at the ground state
of the diquark-antidiquark correlators alone, one cannot
reach conclusions regarding Zþ

c . This holds also for the
ground states fromODD$

(used in [17]) orOD$D$
correlators

alone. The coupling to J=ψπ, ηcρ (and possibly some
others) has to be taken into account, as shown by our study.
These cautionary remarks also apply to QCD sum-rule
studies that are based on correlators.

B. Reduced interpolator basis

Here we show an example why the Zþ
c candidate is not

reliable as long as not all two-meson states with lower
energy values and at least one nearby state with higher
energy have been established. We illustrate that by a
simulation [41] that aims at extracting nine two-meson
states J=ψð0Þπð0Þ, ηcð0Þρð0Þ, J=ψð1Þπð−1Þ, Dð0ÞD̄$ð0Þ,
ψ2Sð0Þπð0Þ, D$ð0ÞD̄$ð0Þ, ψ1Dð0Þπð0Þ, Dð1ÞD̄$ð−1Þ,
ψ3ð0Þπð0Þ using a correspondingly chosen interpolator
basis [numbered according to (A1)]

O1−9;11;13−15;17;19−22 ð7Þ

which should suffice for the extraction of the mentioned
nine two-meson states and possibly an additional exotic
candidate.
The spectrum in Fig. 3(b) and overlaps in Fig. 6 show

that the lowest nine states (indicated by black circles) are

two-meson states. When either one of ODð0ÞD$ð0Þ,
ODð1ÞD$ð−1Þ, or OD$ð0ÞD$ð0Þ is omitted from the correlator
matrix, the corresponding two-particle level disappears
from the spectrum [Figs. 3(d)–3(f)].
The state n ¼ 10 at E≃ 4.16 GeV (shown in green) is

an extra state and it has large overlap with diquark-
antidiquark interpolators in Fig. 3. Figure 6 shows that
this state disappears from the spectrum if O4q are omitted
from the basis (7), so the O4q Fock component seems to be
crucial for its existence. We also verified that the energy of
the extra state is rather stable under different choices of
OMM among (7), as long as the O4q are kept in the basis.
This led to the premature conclusion [41] that an extra level
n ¼ 10 could be related to a Zþ

c candidate.
The results in Sec. IV from the complete interpolator basis

(A1), which incorporate also two-meson states in the region
between 4.2 and 4.3 GeV, do not show an additional state
near 4.16 GeV. Furthermore, the complete basis renders an
additional state at higher energy E≃ 4.39 GeV; therefore,
the state from Fig. 3 at E≃ 4.16 GeV is not a reliable
candidate.
In fact, the appearance of an additional state close to the

energy region of the first omitted two-meson states in
Figs. 1 and 3 seems to indicate that such an additional state
may be related to (a linear combination of) omitted two-
meson states via O4q. This is not surprising as ½c̄ d̄'3c ½cu'3̄c
contains a linear combination of various M1ðkÞM2ð−kÞ
after the Fierz rearrangement. In light of this, it is puzzling
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energy levels. The main question is whether there are
any extra energy levels in addition to the expected two-
meson states. An additional energy level near E ! mZc

would be a definite signature for a Z+
c with an approxi-

mate mass mZc .
This paper is organized as follows. Section II discusses

expected two-meson states below 4.3 GeV. Section III de-
tails how energy levels and overlaps are extracted, while
section IV is dedicated to the results. In section V we
summarize cautionary remarks and lessons which may be
useful for future lattice simulations, and we conclude in
Section VI.

II. TWO-MESON STATES IN LATTICE QCD

In lattice QCD the states are identified from discrete
energy-levels En and in principle all physical eigenstates
with given quantum numbers appear. The eigenstate of
interest, Z+

c , gives an energy level at En ! mZc if it ex-
ists. However, various two-meson states M1(p)M2(−p)
have the same quantum numbers and give also rise to
physical eigenstates, which presents a major challenge.
Individual momenta are discretized due to the periodic
boundary conditions in space. If the two mesons do not
interact, then p = 2π

L k with k ∈ N3, and the energies of
M1(k)M2(−k) states for a→ 0 are

En.i. = E1(k)+E2(k) , E1,2(k) =
√

m2
1,2 + k(2πL )2 . (1)

with k ≡ k2. These values are slightly shifted in presence
of the interaction. In experiment, these states correspond
to the two-meson decay products with a continuous en-
ergy spectrum.
Our simulation employs dynamical u and d quarks that

correspond to the pion mass mπ ! 266 MeV [18, 19].
The lattice spacing is a = 0.1239(13) fm. The rather
small box V = 163 × 32 with L ! 2 fm may lead to
sizable finite volume corrections, but it is responsible for
a crucial practical advantage. It makes the Z+

c search
tractable since it reduces the number of M1(k)M2(−k)
states in the considered energy range, as discussed in
Section VC.
On our lattice (with mπ = 266 MeV) the two-particle

states with IG(JP ) = 1+(1+) and total momentum zero
in the energy region of interest E ≤ 4.3 GeV are1

J/ψ(0)π(0), ηc(0)ρ(0), J/ψ(1)π(−1), D(0)D̄∗(0),

ψ2S(0)π(0), D∗(0)D̄∗(0),ψ1D(0)π(0), ηc(1)ρ(−1),

D(1)D̄∗(−1), ψ3(0)π(0), J/ψ(2)π(−2), D∗(1)D̄∗(−1)

D(2)D̄∗(−2) (2)

in order of increasing energy. Their lattice energies En.i.

in the non-interacting limit are denoted by the horizontal

1 We take Elat
n −mlat

s.a. +m
exp
s.a. < 4.3 GeV as argued below.

lines in Fig. 1b and the values follow from the masses
and single-meson energies determined on the same set
of gauge configurations [18, 20]. Establishing two-meson
states up to 4.3 GeV at mπ = 266 MeV should suffice
for searching fairly narrow exotic candidates with mass
below 4.07 GeV for physical pion mass.
The ψ1D in (2) denotes ψ(3770). The appearance of

ψ3π, where ψ3 denotes the charmonium with JPC=3−−,
is an artifact due to reduced symmetry on the cubic lat-
tice as discussed in Appendix A. The hc(0)π(0) is not
present for JP = 1+ since non-vanishing relative mo-
mentum p is required by the orbital momentum l = 1.
The hc(1)π(−1) lies near 4.25 GeV, but is not listed in
(2) since this is the only two-meson state below 4.3 GeV
that we do not aim to extract due to the arguments given
in Appendix A. The energy of ρ(−1) is extracted from
the diagonal correlator of d̄γju within the narrow-width
approximation, where effects related to ρ→ ππ are omit-
ted.
Our aim is to extract and identify all two-particle

energy-levels (2) from the full, coupled correlator matrix
of hadron operators and establish whether QCD predicts
additional states related to the exotic Z+

c hadron.
This goal presents a considerable challenge by itself.

Note that a rigorous treatment (via a Lüscher-type finite
volume formalism [21–25]) would require the determina-
tion of the scattering matrix for all two-particle chan-
nels that couple, and a subsequent determination of the
mass and the width for any Z+

c resonance(s). The elas-
tic scattering within a single channel has been rigorously
treated by a number of lattice simulations recently. The
first lattice simulation aimed at determining scattering
matrix for two-coupled channels [26] also shows promise
in this respect, while the rigorous treatment of seven cou-
pled channels is still beyond the capabilities of any lattice
simulation at present. Therefore we take a simplified ap-
proach where the existence of Z+

c is investigated by an-
alyzing the number of energy levels, their positions and
overlaps with the considered lattice operators 〈Ω|Oj |n〉.
The rigorous formalism does predict the appearance of
a level in addition to the (shifted) two-particle levels if
there is a relatively narrow resonance. This has been
seen in simulations for elastic scattering (see for exam-
ple [18, 20]) and in analytic studies for simple coupled-
channel cases.

III. TOWARDS THE LATTICE ENERGY
SPECTRUM

The energiesEn and the overlaps Zn
j ≡ 〈Ω|Oj |n〉 of the

physical eigenstates n are extracted from the correlator
matrix

Cjk(t) = 〈Ω|Oj(tsrc+t)O†
k(tsrc)|Ω〉 =

∑

n

Zn
j Z

n∗
k e−Ent .

(3)
The physical system for given quantum numbers is cre-
ated from the vacuum |Ω〉 using creation operators O†

k

ops : expt.

m⇡ = 266MeVc̄cd̄u , IG(JPC) = 1+(1+�)

No additional state is found 
                 for m < 4200MeV



ex)  I=0 ππ

E

finite volume

discrete

infinite volume

2mπ

continuous

2mK

ππ KK̄

finite volume
〈0|ππ(x)|E〉

= A · 〈0|ππ(x)|ππ〉 + B · 〈0|ππ(x)|KK̄〉

〈0|KK̄(x)|E〉
= C · 〈0|KK̄(x)|ππ〉 + D · 〈0|KK̄(x)|KK̄〉

〈0|KK̄(x)|KK̄;k〉

〈0|KK̄(x)|ππ;k〉

infinite volume
〈0|ππ(x)|ππ;k〉

〈0|ππ(x)|KK̄;k〉

at allowed E

Allowed energy : 

: one relation 
f(δππ(E), δKK̄(E), η(E), E) = 0

physics : δππ(E), δKK̄(E), η(E)

We can not get 
individually from E

δππ(E), δKK̄(E), η(E)

Comments for multi SC. system

 Parameterization of the scattering amplitudes.
E of a lot of eigenstates.

=> hadron interaction



2) SC. state + Bound sate 

φ(x; iκ) =
∑

lm

Clm · φlm
∞

(x; iκ)

ex)  Two nucleon        

tan δNN (iκ) → −i

for L → ∞

E → mD

finite volume

discrete

infinite volume
NN

2mN

mD
1/L · exp(−L)

E

continuous
+ discrete

: satisfies p.BC.

Lüscher’s formula

at allowed E
E = 2 ·

√

m2

N
+ (iκ)2 < 2mN

: relation between 
E and δNN (iκ)

??

 2 R

( Deuteron bound state )3S1


