Hadron interaction from phase shift analysis in lattice QCD

NSTAR2015, 2015/05/27
Naruhito Ishizuka
University of Tsukuba

1. Calculation method of the scattering phase shift by Lattice QCD.
2. Some applications to resonance and bound state systems.

1. Introduction

Recent progress of simulation algorithm, supported by the development of computer power, makes it possible to calculate the hadron masses at physical quark mass by lattice QCD.

But, it is only for stable particles

Hadron masses at physical quark mass
PACS-CS Phys.Rev.D81:074503,2010.

for unstable particle (ρ, K^{*}, Δ) energies of ground states on finite volume are plotted.
(: not resonance masses)
Calculations of resonance mass and decay width of unstable particles at physical quark mass still remain.

These can be carried out by analysis of the scattering phase shift.

Scattering phase shift
=> Information of Hadron interaction
: important for understanding properties of hadrons

Correlation function of resonance on the lattice

for ρ meson

$$
\rho=\bar{u} \gamma_{j} u-\bar{d} \gamma_{j} d
$$

$\left.\langle 0| \rho^{\dagger}(t) \rho(0)|0\rangle=\sum_{\alpha}|\langle 0| \rho| \alpha\right\rangle\left.\right|^{2} \cdot \mathrm{e}^{-E_{\alpha} t}$
: multi exp. form with $E_{\alpha} \in \mathbb{R}$
(: same form as for stable particle)

naive expectation :

for unstable particle

$$
E=M+i \Gamma \quad(M, \Gamma \in \mathbb{R})
$$

time correlator $\sim \mathrm{e}^{-M t} \cdot \mathrm{e}^{-i \Gamma t}$
: This is only true in infinite volume !
infinite volume finite volume

Decay width can not be directly obtained from correlation function on the lattice.

Calculation of scattering phase shift [Finite size method]

M. Lüscher , CMP105(86)153, NPB354(91)531.

Ex) for $\pi ा \pi$ S-wave (extension to other system is straight forward)
In $L \times L \times L$ periodic box (: lattice)
Energy of π :

$$
E=\sqrt{m_{\pi}^{2}+p^{2}} \quad p^{2}=(2 \pi / L)^{2} \cdot n, n \in \mathbb{Z}
$$

Energy of πm :

$$
E=2 \sqrt{m_{\pi}^{2}+p^{2}} \quad p^{2}=(2 \pi / L)^{2} \cdot n, n \notin \mathbb{Z} \quad(: \text { discrete })
$$

$$
\begin{aligned}
& p \cdot \cot \delta(p)=\frac{2}{\sqrt{\pi} L} \cdot \frac{1}{\sqrt{4 \pi}} \sum_{\mathbf{n} \in \mathbb{Z}^{3}} \frac{1}{n^{2}-q^{2}} \quad(q=2 \pi / L \cdot p) \\
& \delta(p): \text { SC. phase shift in infinite volume }
\end{aligned}
$$

: Lüscher's finite size formula
Energy of system

on the lattice \Longrightarrow\begin{tabular}{l}
SC. phase shift

in infinite volume

\Longrightarrow

Informations of

hadron interaction
\end{tabular}

Other methods

1. From time correlation function

Extraction the resonance parameter
by fitting the time correlation function on the lattice to effective theories.
: strongly relies on effective theory.
recently : model independent method at $L=$ huge
U.-G. Meissner et al., NPB846(2011)1.
: very difficult in QCD !!
2. From spectrum density
V. Bernard et al., JHEP 08(2008) 024.

Calculations on many lattice volumes.
Extracting energies of very higher states. : very difficult in QCD !!
3. From "potential" extracted from BS-function
HAL coll., PRL99(2007)02201, PTP123(2010)89.

Wave function calculated on the lattice.
=> extracting "potential"
=> solving Schrödinger eq. => SC. phase shift.

Contents

1. Introduction
2. Finite size method

Derivation of Lüscher's finite size formula

3. Recent progress

(1) Scattering length of $I=2$ S-wave $\pi \pi \pi$ system
(2) ρ meson decay ($I=1 \mathrm{P}$-wave πm)
(3) $D_{0}^{*}(2400) \quad(D+\pi, S$-wave, resonace $)$
$D_{1}(2420,2430)\left(D^{*}+\pi\right.$, S-wave, resonace)
(4) $D_{s 0}^{*}(2317)(D+K$, S-wave, bound state $)$
(5) $N N$ scattering by two methods [finite size method and HAL potential method]
4. Summary

2. Finite size formula (S-wave $\pi \pi$ for $E<4 m_{\pi}$)

Wave function on the lattice :
(extension to other system is straight forward)

$$
\Phi(\mathbf{x})=\langle 0| \pi(\mathbf{x} / 2) \pi(-\mathbf{x} / 2)|E\rangle
$$

energy eigenstate with

$$
E=2 \sqrt{m_{\pi}^{2}+p^{2}}
$$

assumption: interaction range : $\quad R<L / 2$

solution :

$$
\begin{aligned}
\Phi(\mathbf{x}) & =\sum_{\mathbf{n} \in \mathbb{Z}^{3}} \frac{\mathrm{e}^{i \mathbf{p}_{n} \cdot \mathbf{x}}}{p_{n}^{2}-p^{2}} \quad\left(\mathbf{p}_{n}=\mathbf{n} \cdot(2 \pi) / L\right) \quad\left(\text { for } \delta_{l}(p)=0 \text { for } l \geq 1\right) \\
& =\alpha_{0}(p) \cdot j_{0}(p x)+\beta_{0}(p) \cdot n_{0}(p x)+\left\{j_{l}(p x) ; l \geq 1\right\}
\end{aligned}
$$

$$
p \cdot \cot \delta(p)=p \frac{\alpha_{0}(p)}{\beta_{0}(p)}=\frac{2}{\sqrt{\pi} L} \cdot \frac{1}{\sqrt{4 \pi}} \sum_{\mathbf{n} \in \mathbb{Z}^{3}} \frac{1}{n^{2}-q^{2}} \quad(q=2 \pi / L \cdot p)
$$

: Lüscher's finite size formula

at fixed volume $(L / a=24)$

$\Delta E=E-E^{\text {free }}$
attractive $\quad \Delta E<0$
repulsive $\quad \Delta E>0$

in case of strong attractive int.
Energy of ground state :

$$
E_{-1}=E_{B}+\mathrm{e}^{-L}
$$

Extension of finite size formula

- elastic SC.

$$
A\left(\mathbf{p}_{A}\right)+B\left(\mathbf{p}_{b}\right), m_{A} \neq m_{B}, \mathbf{p}_{A}+\mathbf{p}_{b} \neq 0
$$

A, B : hadron with spin
K. Rummukainen and S.A.Gottlieb, NPB450(1995)397.
X. Feng, K. Jansen, D. Renner, PoS(Lat2010)104.
J.J. Dudek, R.G. Edward, C.E. Thomas, RD86(2012)034031.
Z.Fu, PRD85(2012)014506.
L.Leskovec and S. Prelovsek, PRD85(2012)114507.
M.Göckeler et al, PRD86(2012)094513.
M.Döring et al, EPJA48(2012)114.
N.Li and C.Liu, PRD87(2013)114507.

- multi SC. state (ex $\pi \pi+K K$ for $I=0)$
C. Liu, X. Feng, S. He, Int.J.Mod.Phys. A21(2006)847.
M. Lang. et.al., PLB681(09)439.

HSC coll., PRL113(2014)182001; PRD91(2015)054008.

- three particles (spin less)
M. Hansen and S.R. Sharpe, PRD90(2014)116003.

Extraction of energy of excited state

$\mathcal{O}(t)$: op. with some quantum number

$$
G(t)=\langle 0| \mathcal{O}^{\dagger}(t) \mathcal{O}\left(t_{0}\right)|0\rangle=\sum_{n} A_{n} \cdot \mathrm{e}^{-E_{n} \cdot\left(t-t_{0}\right)} \quad \text { for } t \gg t_{0}
$$

In principle, E_{n} of excited stats can be extracted by multi exponential fitting. But it is practically very difficult.
$\mathcal{O}_{i}(i=1,2, \cdots N):$ ops. with some quantum number assuming the lowest N states dominate correlation function.

$$
\begin{aligned}
& G_{i j}(t)=\langle 0| \mathcal{O}_{i}^{\dagger}(t) \mathcal{O}_{j}\left(t_{0}\right)|0\rangle \\
& =\sum_{n=0}^{N-1} V_{i n}^{\dagger} \cdot \lambda_{n}\left(t-t_{0}\right) \cdot V_{n j}=\left[V^{\dagger} \cdot \lambda\left(t-t_{0}\right) \cdot V\right]_{i j} \quad \text { for } t \gg t_{0} \\
& \quad V_{n j}=\langle n| \mathcal{O}_{j}|0\rangle, \quad \lambda_{n}(t)=\exp \left(-E_{n} t\right)
\end{aligned}
$$

so,

$$
\left[G\left(t_{R}\right)^{-1} G(t)\right]_{n \text {-th eigenvalue }}=\lambda_{n}\left(t-t_{R}\right)
$$

We can extract E_{n} by single exponential fitting.
ex) ρ meson $\left(I=1, J^{P C}=1^{--}\right)$

- $\mathcal{O}^{\pi \pi}(\mathbf{p})=\pi^{+}(\mathbf{p}) \pi^{-}(-\mathbf{p})-\pi^{+}(-\mathbf{p}) \pi^{-}(\mathbf{p})$
- $\rho_{j}=\bar{u} \gamma_{j} u-\bar{d} \gamma_{j} d$
ex) $\quad D_{s 0}^{*}(2317)\left(I=0, J^{P}=0^{+}\right) \quad($ bound state $)$
- $\mathcal{O}^{D K}(\mathbf{p})=D^{+}(\mathbf{p}) K^{-}(-\mathbf{p})+D^{-}(\mathbf{p}) K^{+}(-\mathbf{p})$
- $M=\bar{s} c$

3. Recent progress
 (1) Scattering length of $l=2$ S-wave πm

Talk by Yamazaki at Lat. 2015 (PoS(Lattice2015)009)

$\langle\pi \pi(t) \pi \pi(0)\rangle=A \cdot \exp (-E t)$
for large t region
$E=2 \sqrt{m_{\pi}^{2}+p^{2}}$
$a_{0} \sim \tan \delta(p) / p$
all results are on LO CHPT with $f_{\pi}\left(m_{\pi}\right)$ and consistent with expt.

(2) ρ meson decay ($I=1$ P-wave $\pi \pi$)

Talk by Yamazaki at Lat. 2015 (PoS(Lattice2015)009)

HSC coll.,. PRD87(2013)034505.
exp. : $\quad \Gamma=\frac{g_{\rho \pi \pi}^{2}}{6 \pi} \frac{p_{\rho}^{3}}{m_{\rho}^{2}}=146.4(1.1) \mathrm{MeV}$

$$
g_{\rho \pi \pi}=5.878(22)
$$

$$
m_{\rho}=775.5(0.4) \mathrm{MeV}
$$

$$
\frac{p^{3}}{\tan \delta(p)} / \sqrt{s}=\frac{6 \pi}{g_{\rho \pi \pi}^{2}} \cdot\left(m_{\rho}^{2}-s\right)
$$

(3) $D_{0}^{*}(2400)$ and $D_{1}(2420,2430) \quad\left(\left(D, D^{*}\right)+\pi, S\right.$-wave $)$ neutral D meson : $D=\bar{c} \Gamma u$

	J^{P}	Γ	
$D(1864)$	0^{-}	γ_{5}	stable
$D^{*}(2010)$	1^{-}	γ_{j}	$D \pi, \Gamma=96 \mathrm{KeV}$
$D_{0}^{*}(2400)$	0^{+}	I	$D \pi, \Gamma=267 \mathrm{MeV}$
$D_{1}(2420)$	1^{+}	$\gamma_{j} \gamma_{5}$	$D^{*} \pi, \Gamma=27 \mathrm{MeV}$
$D_{1}(2430)$	1^{+}	$\gamma_{j} \gamma_{5}$	$D^{*} \pi, \Gamma=384 \mathrm{MeV}$

total angular mom. : $J=j_{u}+s_{c}$
j_{u} : total angular mom. of u quark
s_{c} : spin of c quark
in heavy charm limit,
j_{u} is good quantum number.
expectation form heavy quark sym. :

$$
\begin{aligned}
& j_{u}^{P}=1 / 2^{-}, j^{P}=\left(0^{-}, 1^{-}\right)=\left(D(1864), D^{*}(2010)\right) \\
& j_{u}^{P}=1 / 2^{+}, j^{P}=\left(0^{+}, 1^{+}\right)=\left(D_{0}^{*}(2400), D_{1}(2430)\right) \quad: \text { S-wave decay [broad] } \\
& j_{u}^{P}=3 / 2^{+}, j^{P}=\left(1^{+}, 2^{+}\right)=\left(D_{1}(2420), D_{2}^{*}(2460)\right) \quad \text { : D-wave decay [narrow] }
\end{aligned}
$$

$D_{0}^{*}(2400)$ and $D_{1}(2420,2430)$ by lattice QCD (in heavy charm limit)
D. Mohler, S. Prelovsek, R.M. Woloshyn, PRD87(2013)034501.

$N_{L}^{3} \times N_{T}$	κ_{l}	β	$a[\mathrm{fm}]$	$L[\mathrm{fm}]$	\#configs $m_{\pi}[\mathrm{MeV}]$	
$16^{3} \times 32$	0.1283	7.1	$0.1239(13)$	1.98	$280 / 279$	$266(3)(3)$

$$
\begin{aligned}
& D_{0}^{*}(2400) \\
& \text { SC. phase shift of } D+\pi \text {, S-wave } \\
& p \cdot \cot \delta(p) / \sqrt{s}=(6 \pi) / g^{2} \cdot\left(m_{R}^{2}-s\right) \\
& g=2.55(21)(03) \mathrm{GeV} \\
& m\left(D_{0}^{*}\right)-M_{\overline{1 S}}=350.8(20.2)(3.7) \mathrm{MeV} \\
& M_{\overline{1 S}}=\left(M(D)+2 M\left(D^{*}\right)\right) / 4 \\
& \Gamma=267(40) \mathrm{MeV} \rightarrow g \leq 1.92(14) \mathrm{GeV} \\
& m\left(D_{0}^{*}\right)-M_{\overline{1 S}}=347(2) \mathrm{MeV}
\end{aligned}
$$

$D_{1}(2420,2430)$
SC. phase shift of $D^{*}+\pi$, S-wave

$$
g=2.01(15)(02) \mathrm{GeV}
$$

$$
m\left(D_{1}(2430)\right)-M_{\overline{1 S}}=380.7(20.0)(4.0) \mathrm{MeV}
$$

$$
m\left(D_{1}(2420)\right)-M_{\overline{1 S}}=448.77(14.1)(4.7) \mathrm{MeV}
$$

: large overlap with $\bar{c} \gamma_{j} \gamma_{5} u$ op.
small overlap with $D^{*}+\pi$ (S-wave) op.

$$
\begin{gathered}
\text { maybe } D_{1}(2420)(\Gamma=27 \mathrm{MeV}) \\
\text { : very narrow }
\end{gathered}
$$

omitting this state, they analyze as one resonance with

$$
p \cdot \cot \delta(p) / \sqrt{s}=(6 \pi) / g^{2} \cdot\left(m_{R}^{2}-s\right)
$$

Expt :

$$
\Gamma=384(107) \mathrm{MeV} \rightarrow g \leq 2.50(40) \mathrm{GeV}
$$

$$
456(40) \mathrm{MeV}
$$

449.9 (0.6) MeV

(4) $D_{s 0}^{*}(2317)(D+K, S$-wave, bound state $)$

J^{P}	Mass			
K	0^{-}	$\bar{s} \gamma_{5} u$	498	
D	0^{-}	$\bar{u} \gamma_{5} c$	1864	
$D_{s 0}^{*}$	0^{+}	$\bar{s} c$	2317	$<(K+D=2362)$

This state should be found as bound state of $D+K$ scattering system.
D. Mohler, S. Prelovsek, R.M. Woloshyn, PRL111(2013)222001, PRD90(2014)034510.

ID	$N_{L}^{3} \times N_{T}$	N_{f}	$a[\mathrm{fm}]$	$L[\mathrm{fm}]$	No. configs	$m_{\pi}[\mathrm{MeV}]$	$m_{K}[\mathrm{MeV}]$
(1)	$16^{3} \times 32$	2	$0.1239(13)$	1.98	279	$266(3)(3)$	$552(2)(6)$
(2)	$32^{3} \times 64$	$2+1$	$0.0907(13)$	2.90	196	$156(7)(2)$	$504(1)(7)$

They also study $D_{s 1}(2536), D_{s 2}^{*}(2573)$

SC. phase shift of $D+K$, S-wave

black line : finite size formula
red line $=-|p a|:$ corresponding to $\cot \delta=i$
ground state is near red line $=>$ bound state $D_{s 0}^{*}(2317)$

\[

\]

(5) $N N$ scattering by two methods

 finite size method vs. HAL potential methodHAL potential method HAL coll., PRL99(2007)02201, PTP123(2010)89.
(1) Calculation of BS wave function by the lattice QCD.

$$
\Phi(\mathbf{x})=\langle 0| N(\mathbf{x} / 2) N(-\mathbf{x} / 2)\left|N N ; E_{p}\right\rangle \quad E_{p}=2 \sqrt{m_{N}^{2}+p^{2}}
$$

(2) Extraction of "potential" V from wave function by Schrödinger eq. at energy E_{p}.

$$
\begin{aligned}
& (\Phi(\mathbf{x}) \rightarrow V(\mathbf{x})) \\
& \quad-\frac{\nabla^{2}}{m_{N}} \Phi(\mathbf{x})+V(\mathbf{x}) \Phi(\mathbf{x})=E_{p} \Phi(\mathbf{x})
\end{aligned}
$$

[More sophisticated method is recently used.]
(3) Solving Schrödinger eq. with the potential V at general energy E_{k}.

$$
\begin{aligned}
& (V(\mathbf{x}) \rightarrow \Psi(\mathbf{x} ; k)) \\
& \quad-\frac{\nabla^{2}}{m_{N}} \Psi(\mathbf{x} ; k)+V(\mathbf{x}) \Psi(\mathbf{x} ; k)=E_{k} \Psi(\mathbf{x} ; k) \quad E_{k}=2 \sqrt{m_{N}^{2}+k^{2}} \\
& \\
& \quad \Psi(\mathbf{x} ; k) \Rightarrow \text { SC. phase shift at general energy } E_{k}
\end{aligned}
$$

Works by HAL coll.

- NN potential
N. Ishii , S. Aoki, T. Hatsuda, PRL99(2007)02201; HAL coll., PoS CD12(2013)025.
- Energy dependence of NN potential K. Murano et al, PTP125(2011)1225.
- LS force in odd parity sectors HAL coll., PLB735(2014)19.
- Hyperon potential HAL coll., Int.J.Mod.Phys.E19(2010)2442.
- $\Omega \Omega$ potential HAL coll., PoS(Lattice 2014)232; arXiv:1503.03189.
- N Ω potential HAL coll., NPA928(2014)89.
- NNN potential HAL coll., PTP127(2012)723.
- H dibaryon HAL coll., PRL106(2011)162002; NPA88(2012)28.
- Charmed meson system HAL coll., PLB729(2014)85.
- Couple channel see Parallel-B 27-1 by Sasaki.
- $\mathrm{Z}_{\mathrm{c}}{ }^{+}$see Parallel-B 27-2 by Ikeda.

HAL coll., PoS CD12(2013)025.

much smaller than expt.

No bound state in both ${ }^{1} \mathrm{~S}_{0}$ and ${ }^{3} \mathrm{~S}_{0}$. : inconsistent with expt.
[due to large quark mass ?]

Binding energy of $N N$ ground state

$\Delta E=E_{0}-2 \cdot m_{N}$
$3 \mathrm{~S}_{1}$

T. Yamazaki, K.-I. Ishikawa, Y. Kuramashi, A. Ukawa, PRD86(2012)074514; arXiv:1502.04182.

Bound state in both channels !! : inconsistent with Expt. and HAL coll. !!

Reason?
[Consistency is seen in $I=2 \pi \pi$ system.]
T. Kurth, N. Ishii, T. Doi, S. Aoki, T. Hatsuda, JHEP1312(2013)015.

4. Summary

Analysis of scattering phase shift give us a lot of information of hadron interactions.

In recent the lattice calculation, a lot of studies of resonance and bound state form the phase shift are carried out.

Next step of the lattice calculations :

- Solving the problem in NN scattering system.
[Finite size method vs. HAL potential method]
- Calculations at physical quark mass.
- Application to other systems (including the baryon).

Thanks for your attention.

Back up

$K^{*}(892)(K+\pi, l=1 / 2$, P-wave $)$
(1) S. Prelovsek, L. Leskove, C.B. Lang, D. Mohler, PRD88(2013)054508.

$$
m_{\pi}=266 \mathrm{MeV}
$$

exp :

$$
\begin{aligned}
m_{K^{*}} & =891(14) \mathrm{MeV} & & 891.66(26) \mathrm{MeV} \\
g & =5.7(1.6) & & 5.72(6)
\end{aligned}
$$

$K^{*}(892)(K+\pi, l=1 / 2$, P-wave $)$

(2) HSC coll., PRL113(2014)182001; PRD91(2015)054008.

$$
m_{\pi}=391 \mathrm{MeV}
$$

$\frac{p^{3}}{\tan \delta(p)}=\frac{6 \pi}{g^{2}} \cdot \sqrt{s}\left(m^{2}-s\right)$
$m_{K^{*}}<m_{K}+m_{\pi}$
: bound state
un-physical kinematics.
quark mass is too large.

$K+\pi, l=1 / 2$, S, D-wave

HSC coll., PRL113(2014)182001; PRD91(2015)054008.

$$
m_{\pi}=391 \mathrm{MeV}
$$

$t_{i j}^{-1}(s)=\frac{1}{\left(2 p_{i}\right)^{j}} K_{i j}^{-1}(s) \frac{1}{\left(2 p_{j}\right)^{J}}+I_{i j}(s)$,
$K_{i j}(s)=\sum_{p} \frac{g_{i}^{(p)} g_{j}^{(p)}}{m_{p}^{2}-s}+\sum_{n} \gamma_{i j}^{(n)} s^{n}$,
$\operatorname{det}\left[\delta_{i j} \delta_{J J^{\prime}}+i \rho_{i} t_{i j}^{(J)}\left(E_{\mathrm{c} . \mathrm{m} .}\right)\left(\delta_{J J^{\prime}}+i \mathcal{M}_{J J^{\prime}}^{\vec{P} \Lambda}\left(p_{i} L\right)\right)\right]=0$,

$$
\begin{aligned}
& m_{\kappa}<m_{K}+m_{\pi} \\
& \quad: \text { bound state } \\
& \text { un-physical kinematics. } \\
& \text { quark mass is too large. }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{op}=\bar{c} c, D D^{*}, J / \Psi V \quad\left(J^{P C}=1^{++}\right) \\
& m_{\pi}=266 \mathrm{MeV}
\end{aligned}
$$

$$
\log \left(\lambda_{n}(t) / \lambda_{n}(t+1)\right) \sim E_{n}
$$

(a) $I=0$
(e) $I=1$

$X(3872)$	$m_{X}-\frac{1}{4}\left(m_{\eta_{c}}+3 m_{J / \psi}\right)$	$m_{X}-\left(m_{D^{0}}+m_{D^{0 *}}\right)$
Lattice ${ }^{L \rightarrow \infty}$	$815 \pm 7 \mathrm{MeV}$	$-11 \pm 7 \mathrm{MeV}$
Experiment	$804 \pm 1 \mathrm{MeV}$	$-0.14 \pm 0.22 \mathrm{MeV}$

(assuming width is narrow)

$\mathrm{Z}_{\mathrm{c}}{ }^{+}(3900)$

S. prelovsek, C.B. Lang, L. Leskovec, D. Mohler, PRD91(2015)014504.
$\bar{c} c \bar{d} u, I^{G}\left(J^{P C}\right)=1^{+}\left(1^{+-}\right)$

$$
m_{\pi}=266 \mathrm{MeV}
$$

ops:

$$
\begin{align*}
& J / \psi(0) \pi(0), \eta_{c}(0) \rho(0), J / \psi(1) \pi(-1), D(0) \bar{D}^{*}(0), \\
& \psi_{2 S}(0) \pi(0), D^{*}(0) \bar{D}^{*}(0), \psi_{1 D}(0) \pi(0), \eta_{c}(1) \rho(-1), \\
& D(1) \bar{D}^{*}(-1), \psi_{3}(0) \pi(0), J / \psi(2) \pi(-2), D^{*}(1) \bar{D}^{*}(-1) \\
& D(2) \bar{D}^{*}(-2) \tag{2}
\end{align*}
$$

No additional state is found for $\mathrm{m}<4200 \mathrm{MeV}$

Comments for multi SC. system

```
ex) I=0 \pim
    at allowed E
    infinite volume
\[
\begin{array}{ll}
\langle 0| \pi \pi(\mathbf{x})|\pi \pi ; \mathbf{k}\rangle & \langle 0| K \bar{K}(\mathbf{x})|\pi \pi ; \mathbf{k}\rangle \\
\langle 0| \pi \pi(\mathbf{x})|K \bar{K} ; \mathbf{k}\rangle & \langle 0| K \bar{K}(\mathbf{x})|K \bar{K} ; \mathbf{k}\rangle \\
\text { physics : } & \delta_{\pi \pi}(E), \delta_{K \bar{K}}(E), \eta(E)
\end{array}
\]
finite volume
\[
\begin{aligned}
& \langle 0| \pi \pi(\mathbf{x})|E\rangle \\
& \quad=A \cdot\langle 0| \pi \pi(\mathbf{x})|\pi \pi\rangle+B \cdot\langle 0| \pi \pi(\mathbf{x})|K \bar{K}\rangle \\
& \langle 0| K \bar{K}(\mathbf{x})|E\rangle \\
& \quad=C \cdot\langle 0| K \bar{K}(\mathbf{x})|\pi \pi\rangle+D \cdot\langle 0| K \bar{K}(\mathbf{x})|K \bar{K}\rangle
\end{aligned}
\]
```

Allowed energy :

$$
f\left(\delta_{\pi \pi}(E), \delta_{K \bar{K}}(E), \eta(E), E\right)=0
$$

: one relation

We can not get $\delta_{\pi \pi}(E), \delta_{K \bar{K}}(E), \eta(E)$ individually from E
infinite volume finite volume

Parameterization of the scattering amplitudes. E of a lot of eigenstates.
=> hadron interaction

2) SC. state + Bound sate

$$
\text { ex) Two nucleon }{ }^{3} S_{1} \text { (Deuteron bound state) }
$$

at allowed E

$$
\begin{gathered}
E=2 \cdot \sqrt{m_{N}^{2}+{\underline{(i \kappa)^{2}}}^{\kappa}}<2 m_{N} \\
\phi(\mathbf{x} ; i \kappa)=\sum_{l m} C_{l m} \cdot \phi_{\infty}^{l m}(x ; i \kappa) \\
\text { : satisfies p.BC. }
\end{gathered}
$$

\rightarrow Lüscher's formula
: relation between

$$
E \text { and } \delta_{N N}(i \kappa)
$$

$$
\text { for } L \rightarrow \infty
$$

$$
E \rightarrow m_{D}
$$

$$
\tan \delta_{N N}(i \kappa) \rightarrow-i
$$

