

Hadron physics from electron colliders, Belle and BaBar

M. Niiyama (Kyoto U.)

Charged charmonium like states

Baryon spectroscopy

Belle and BaBar experiments

- ◆Asymmetric energy e⁺e⁻ collider
- ◆ Y (4S) and some other energies
- Integrated luminosity ~1000 fb⁻¹ (Belle), 550 fb⁻¹ (BaBar)
- General purpose detector
 - **Detect charged particles and photons**

 - K/ π separation up to 3.5 GeV/c

Good momentum/vertex resolution → Suitable for hadron physics!

BABAR, NIM A479, 1 (2002)

EMC

6580 CsI(TI) crystals

e+(3.1GeV)

Drift Chamber 40 stereo lavers

Silicon Vertex Tracker 5 layers, double-sided strips

The BABAR Detector

Discovery of new hadrons at Belle and BaBar

Hadron type

	Пс	BaBar		
	Charmonium (like)	D(s)	Charmed baryon	Bottomonium
B-decay	η _c (2S) X(3872) Z _c (4050) Z _c (4250) Z _c (4430) Z _c (4200)	D ₁ (2430) D _s (2700)		
ISR	Y(4260) Z(3900) Y(4008) Y(4660)			
Double charmonium	X(3940) X(4160)			
Two photon	χ _{c2} (2P)			
Continuum		($Σ_c(2800) \land_c(2940)^+$ $Ξ_c(2980) Ξ_c(3080)$ $Ω_c(2770) Ξ_c(3055)$ $Ds_0(2317)$)
Y(5S) decay				Z _b (10610) Z _b (10650) h _b (1P) h _b (2P) η _b (2S)

*some states may be missed.

Y.Kato's talk at JPS meeting (2015)

Reactoin

Belle

Z_c(4430)⁺ Belle and BaBar results

- $\diamond \Psi' \pi^+$ decay, charged state with $c\overline{c} \rightarrow Genuine 4$ quark state!
- **Amplitude analysis in** [M(K⁻ π^+), M(ψ ' π^+), cos(Θ), φ] w/ K^{*} resonances
- ♦ Belle : 6.4 σ significance, M=4485±22⁺²⁸-11 MeV, Γ=200⁺⁴¹-46⁺²⁶-35 MeV Br(B⁰→Z⁻K⁺, Z⁻→ψ'π⁻) = $(3.2^{+1.8}-0.9^{+5.3}-1.6)$ x 10⁻⁵ J^P=1⁺ is favored with 3.4 σ
- → BaBar : 95% CL upper limit, Br(B⁰→Z⁻K⁺, Z⁻→ ψ ' π ⁻)<3.1 x 10⁻⁵

Confirmation by LHCb

- ♦ 12 times more $B^0 \rightarrow \psi' \pi^- K^+$ events than Belle.
- Amplitude analysis as same as Belle and BaBar.
- 13.9 σ significance, M=4475±7⁺¹⁵-25 MeV, Γ=172±13⁺³⁷-34 MeV consistent with Belle.
- ♦ $J^{P}=1^{+}$ is determined with 8 σ .
- ◆Z_c(4430)⁺ is established!

Z_c(3900)⁺:another charged charmonium-like

Charmed baryon spectroscopy

- > 21 charmed baryons are listed in PDG 2014.
 - 16 of them are firstly observed in e⁺e⁻ collider experiment.
 - Recently Belle and BaBar identified many excited Ξ_c 's.

 $-\Lambda_{c}(2940)$ $\Xi_{c}(3123)$ $= \Xi_{c}(3080)$ $-\Lambda_{c}(2880)$ $-\Xi_{c}^{(3055)}$ $-\Xi_{c}(2980)$ $-\Lambda_{c}(2765)$ $\sum_{c}(2880)$ $\Xi_{c}(2930)$ $= \Xi_{c}(2815)$ $-\Lambda_{c}(2625)$ $-\Xi_{c}(2790)$ $-\Lambda_{c}(2595)$ $-\Xi_{c}(2645)$ $\sum_{c} \Sigma_{c}(2520) \qquad \sum_{c} \Sigma_{c}(2575) = \Omega_{c}(2770)$ CLEO 8 (1995~2001) BELLE 3 (2006~) BABAR 5 (2007~) $\underline{\Sigma}_{c}(2455) \quad \underline{\Xi}_{c} \quad \underline{\Omega}_{c}$ $-\Lambda_{\rm c}$

Diquark in charmed baryon

- Diquark correlation
 - Important for tetraquark, pentaquark system
 - Strong attraction for J=0, flavor singlet diquark
 - Color spin interaction $:1/m_{q1}m_{q2}$
 - suppress charm-light quark interaction
 - CHARM • Diquark-charm (λ), q-q (ρ) excitation may decouple in charmed baryon spectroscopy.
- Experimental issues
 - Precise mass, width, branching ratio for understanding wave function
 - Charged/neutral partner to identify isospin.
 - Spin-parity determination
 - For charm baryons, J^P are from quark model prediction except for $\Lambda_c(2880)^+$

Precise mass and width measurement of Σ_c baryons

Isospin mass splittings of Σ_c

Naïve expectation:

- $\mathbf{m}(\mathbf{u}) < \mathbf{m}(\mathbf{d}) \rightarrow \mathbf{m}(\Sigma_c^{++})(\mathbf{uuc}) < \mathbf{m}(\Sigma_c^{-0}) \text{ (ddc)}$
- Experimental measurement
 - $m(\Sigma_c(2455)^{++})-m(\Sigma_c(2455)^0) = 0.24 \pm 0.09 \text{ MeV} (PDG)$
 - **\Sigma** hyperons : m(Σ^+) (uus) <m(Σ^-) (dds) as expected,
- Theoretical models
 - Electromagnetic potential, hyperfine interaction
- **Experimental accuracy is still not enough to conclude**

the mass ordering (< 3σ). \rightarrow High precision measurement at Belle!

(MeV/c²)	$m(\Sigma_c)$ - $m(\Lambda_c^+)$	Decay widths (Г)
Σ _c (2455) ⁰	167.29 ± 0.01 ± 0.02	1.76 ± 0.04 ^{+0.09} -0.21
Σ _c (2455) ⁺⁺	67.5 ± 0.0 ± 0.02	1.84 ± 0.04 ^{+0.07} -0.20
Σ _c (2520) ⁰	231.98 ± 0.11 ± 0.04	15.41 ± 0.41 ^{+0.20} -0.32
Σ _c (2520) ⁺⁺	231.99 ± 0.10 ± 0.02	$14.77 \pm 0.25 + 0.18 - 0.30$

Slide from S. Lee' talk at LLWI 2015

Results fro	m Belle	PRD	89, 0911202 (2014)	B
$rac{1}{2}$ 5000 4000 4000 $rac{1}{2}$ Fit mode Backgr N(Σ_c (24 N(Σ_c (24) N(Σ_c (24	el pund $(55)^0) = 32484 \pm 291$ $(20)^0) = 40796 \pm 851$ 1.01 nprovement of r rmed m(Σ_c^{++})>N put to understar	mass dete $I(\Sigma_c^0)$ with wave function	Fit model Background $N(\Sigma_c(2455)^{++}) = 35984 \pm 311$ $N(\Sigma_c(2520)^{++}) = 43728 \pm 511$ $\chi^2/ndf = 0.98$ Frmination. In more than 10 σ .	BELLE
(MeV/c²)	m(Σ _c)-m(λ	$\Lambda_{c}^{+})$	Decay widths (Г)	
Σ _c (2455) ⁰	167.29 ± 0.01	± 0.02	1.76 ± 0.04 ^{+0.09} -0.21	
Σ _c (2455) ⁺⁺	67.5 ± 0.0	l ± 0.02	1.84 ± 0.04 ^{+0.07} -0.20	
Σ _c (2520) ⁰	231.98 ± 0.11	1 ± 0.04	15.41 ± 0.41 ^{+0.20} -0.32	
Σ _c (2520) ⁺⁺	231.99 ± 0.10	0 ± 0.02	$14.77 \pm 0.25 + 0.18 - 0.30$	
		Slide fro	om S. Lee' talk at LLWI 201	5 1

Charm strange baryons, Ξ_c , Ω_c

Charmed strange baryons Ξ_c , (usc, dsc)

- Belle observed $\Xi_c(2980)/(3080)^{+/0}$ in $\Lambda_c^+ K\pi$.
- BaBar confirmed them and reported $\Xi_c(3055)/(3123)^+$ in $\Sigma_c^{(*)++}K^-$.
- They are not confirmed yet and isospin partners are not observed.

Results of AD decay

Radiative decay of excited Ω_c (ssc)

- General purpose detector : sensitive to charged paritcles and γ
- Excited Ω_c below pionic decay threshold is found.
 - What about Ω hyperons? \rightarrow Further study in Belle and BaBar data is awaited.

Quantum number determination

 $m(\Xi^{\dagger} \pi^{+} K^{+}) (GeV/c^{2})$

- ◆ J^P assignment of charmed baryons are mostly from quark model.
 - BaBar determined spin of $\Sigma_c(2455)$ in B⁻ $\rightarrow \Sigma_c(2455)^0$ p^{bar} as $\frac{1}{2}$.

 $m(\Xi^{-}\pi^{+})$ GeV/c²

cos_{θ-}

Search for Ξ_{cc}

SELEX, BaBar and Belle results

- Evidence in M(Λ_c^+ K⁻ π^+) from SELEX at 3.52 GeV
- Not seen in BaBar (232fb^{-1}) and Belle (462fb^{-1}) data.

Search using Belle full statistics has been performed. No evidence.

95% UL of $\sigma(e^+e^- \rightarrow \Xi_{cc}X) \times Br(\Xi_{cc}^+ \rightarrow \Xi_c^0 \pi^+) \times Br(\Xi_c^+ \rightarrow \Xi^- \pi^+)$ 0.076-0.35 fb ⇔ Theory 0.18-0.5 fb (Br=5%)

LHCb also has negative result.

SELEX PRL89,112001(2002)

Events /2.5 [MeV/c²]

Candidates/(3.5 MeV/c

3.42

(b)

0.9

1.0

1.1

1.2

3.47

3.52

PRD 74,011103 (2006)

3.57

M ($\Lambda_{c}^{+}K^{-}\pi^{+}$) [**GeV/c**²]

3.62

Absolute BR of Λ_c^+

Absolute BR of Λ_c^+

■ PDG: BR($\Lambda_c^+ \rightarrow p \text{ K}^-\pi^+$) = 5.0±1.3%

Combination of model-dependent measurements

Normalization BR for charmed baryons

$$e^+e^- \to c\bar{c} \to D_{tag}\bar{p}\pi^+\Lambda_c^+, \quad D_{tag} = D^{(*)}$$

$$M_{miss}(D_{tag}X_{frag}p) = \sqrt{(p_{e^+} + p_{e^-} - p_{D_{tag}} - p_{X_{frag}} - p_p)^2}$$

Absolute BR of Λ_c^+

Exclusive Λ_c^+ sample within inclusive sample: all tracks from $\Lambda_c^+ \rightarrow p \ K^-\pi^+$ required

 $^{+3.0}_{-3.9}$

Total

Baryon production rates

Baryon production rate in e⁺e⁻ collision

Summary

- Charged charmonium-like states are established.
 - $J^{P} = 1^{+}$ for $Z_{c}(4430)$, $Z_{c}(3900)$ and $\Gamma(D\overline{D^{*}})/\Gamma(J/\psi)$ of $Z_{c}(3900)$ are obtained.
 - J/ $\psi\pi$ ($\psi'\pi$) or D \overline{D}^* molecule, c \overline{c} core is there?
 - ◆ More states have been discovered.
- Charmed baryon spectroscopy
 - Precise measurement of Σ_c isospin mass spliting. $\Delta m(\Sigma_c^{++}-\Sigma_c^{0})=0.22\pm0.014$ MeV
 - Comparison with quark model to obtain wave function.
 - Spectroscopy of excited Ξ_c 's and Ω_c .
 - Mass, width, decay mode measurements.
 - Can we distinguish diquark (ρ , λ) excitation?
 - ♦ J^P assignments. $5/2^+:\Lambda_c(2880)^+$, $\frac{1}{2}:\Sigma_c(2455)$, $3/2:\Xi(1530)$, $1/2:\Omega$
 - Search for double charmed baryon.
 - Model independent absolute B.R. of Λ_c^+ . (6.84±0.24^{+0.21}_{-0.27})%
 - What about Ξ_c , Ω_c ? Even model dependent estimation is helpful.
 - Baryon production rates.

Actively studied! More results will come from BaBar, Belle and Belle II