Hadron physics from electron colliders, Belle and BaBar

M. Niiyama (Kyoto U.)

Charged charmonium like states
-Baryon spectroscopy

Belle and BaBar experiments

Asymmetric energy $\mathbf{e}^{+} \mathbf{e}^{-}$collider

- $\Upsilon(4 \mathrm{~S})$ and some other energies
- Integrated luminosity $\sim 1000 \mathrm{fb}^{-1}$ (Belle), $550 \mathrm{fb}^{-1}$ (BaBar)
-General purpose detector
- Detect charged particles and photons
- Good momentum/vertex resolution \rightarrow Suitable for hadron physics!
- K/ $\boldsymbol{\pi}$ separation up to $3.5 \mathrm{GeV} / \mathrm{c}$

Discovery of new hadrons at Belle and BaBar

	Hadron type					Belle BaBar
		Charmonium (like)	D(s)	Charmed baryon	Bottomonium	
$\begin{gathered} \text { q } \\ \cdot H \\ 0 \\ 甘 \\ U \\ 0 \\ 0 \\ 0 \end{gathered}$	B-decay	$\begin{aligned} & \eta_{c}(2 S) \quad X(3872) \\ & Z_{c}(4050) Z_{c}(4250) \\ & Z_{c}(4430) Z_{c}(4200) \end{aligned}$	$\begin{aligned} & D_{1}(2430) \\ & D_{s}(2700) \end{aligned}$			
		$\begin{aligned} & Y(4260) Z(3900) \\ & Y(4008) Y(4660) \end{aligned}$				
	Double charmonium	X(3940) X(4160)				
	Two photon	$\chi_{\text {c2 }}(2 P)$				
	Continuum			$\begin{aligned} & \Sigma_{c}(2800) \wedge_{c}(2940) \\ & \Xi_{c}(2980) \Xi_{c}(3080) \\ & \times(2770) \Xi_{c}(3055) \\ & D_{0}(231 /) \end{aligned}$		
	Y(5S) decay				$\begin{aligned} & Z_{b}(10610 \\ & h_{b}(1 P) h_{b} \end{aligned}$	$\begin{aligned} & \mathrm{z}_{\mathrm{b}}(10650) \\ & 2 \mathrm{P}) \eta_{\mathrm{b}}(2 \mathrm{~S}) \end{aligned}$

*some states may be missed.

$\mathbf{Z}_{\mathbf{c}}(\mathbf{4 4 3 0})^{+}$Belle and BaBar results

Phys. Rev. D 88, 074026 (2013)

$\bullet \Psi ' \boldsymbol{\pi}^{+}$decay, charged state with $\mathbf{c \overline { c }} \rightarrow$ Genuine 4 quark state!

- Amplitude analysis in $\left[\mathbf{M}\left(\mathrm{K}^{-} \pi^{+}\right), \mathrm{M}\left(\psi^{\top} \pi^{+}\right), \cos (\boldsymbol{\Theta}), \varphi\right] \mathbf{w} / \mathbf{K}^{*}$ resonances
- Belle : 6.4σ significance, $M=4485 \pm 22^{+28}{ }_{-11} \mathrm{MeV}, \Gamma=200^{+41}{ }_{-46}{ }^{+26}{ }_{-35} \mathrm{MeV}$ $\mathbf{B r}\left(\mathbf{B}^{0} \rightarrow \mathbf{Z} \mathbf{K}^{+}, \mathbf{Z}^{-} \rightarrow \psi^{\prime} \pi^{-}\right)=\left(\mathbf{3 . 2}^{+1.8}{ }_{-0.9}{ }^{+5.3}{ }_{-1.6}\right) \times 10^{-5}$ $\mathbf{J}^{\mathrm{P}}=\mathbf{1}^{+}$is favored with 3.4σ
\bullet BaBar : 95\% CL upper limit, $\operatorname{Br}\left(\mathrm{B}^{0} \rightarrow \mathrm{Z}^{-} \mathrm{K}^{+}, \mathrm{Z}^{-} \rightarrow \psi^{\prime} \boldsymbol{\pi}^{-}\right)<3.1 \times 10^{-5}$

Confirmation by LHCb

Phys. Rev. Lett. 112, 222002 (2014)

$\rightarrow 12$ times more $\mathrm{B}^{0} \rightarrow \psi^{\prime} \boldsymbol{\pi} \boldsymbol{K}^{-} \mathrm{K}^{+}$events than Belle.

- Amplitude analysis as same as Belle and BaBar.
- $13.9 \boldsymbol{\sigma}$ significance, $M=4475 \pm 7^{+15}-25 \mathrm{MeV}, \Gamma=172 \pm 13{ }^{+37}{ }_{-34} \mathrm{MeV}$ consistent with Belle.
$-\mathrm{J}^{\mathrm{P}}=\mathbf{1}^{+}$is determined with $\mathbf{8 \sigma}$.
$\rightarrow \mathrm{Z}_{\mathrm{c}}(4430)^{+}$is established!

$\mathrm{Z}_{\mathrm{c}}(\mathbf{3 9 0 0})^{+}$:another charged charmonium-like

$\mathrm{Z}_{\mathrm{c}}(\mathbf{3 9 0 0})^{+}$:another charged charmonium-like

Charmed baryon spectroscopy

- 21 charmed baryons are listed in PDG 2014.
- 16 of them are firstly observed in $\mathrm{e}^{+} \mathrm{e}^{-}$collider experiment.
- Recently Belle and BaBar identified many excited Ξ_{c} 's.

	- $\Lambda_{c}(2940)$		$\Xi_{\mathrm{c}}(3123)$	
	$-\Lambda_{c}(2880)$		$\begin{aligned} & =\Xi_{c}(3080) \\ & =\Xi_{\mathrm{c}}(3055) \end{aligned}$	
	$-\Lambda_{c}(2765)$	$-\Sigma_{c}(2880)$	$-\Xi_{\mathrm{c}}(2980)$	
			- $\Xi_{\mathrm{c}}(2930)$	
	$\begin{aligned} & -\Lambda_{c}(2625) \\ & -\Lambda_{c}(2595) \end{aligned}$		$=\Xi_{\mathrm{c}}(2815)$	
			$-\Xi_{c}(2790)$	
			- $\Xi_{\mathrm{c}}(2645)$	
CLEO 8 (1995~2001)			- $\Xi_{c}{ }^{\prime}(2575)$	
BELLE 3 (2006~)		- $\Sigma_{\text {c }}(2520)$		$\Omega_{c}(2770)$
BABAR 5 (2007~)	$-\Lambda_{c}$	- $\Sigma_{\mathrm{c}}(2455)$	$-\Xi_{c}$	- Ω_{c}

Diquark in charmed baryon

- Diquark correlation
- Important for tetraquark, pentaquark system
- Strong attraction for $\mathrm{J}=0$, flavor singlet diquark

- Color spin interaction : $1 / \mathrm{m}_{\mathrm{q} 1} \mathrm{~m}_{\mathrm{q} 2}$
- suppress charm-light quark interaction
- Diquark-charm (λ), q-q (ρ) excitation may decouple in charmed baryon spectroscopy.
- Experimental issues
- Precise mass, width, branching ratio for understanding wave function
- Charged/neutral partner to identify isospin.
- Spin-parity determination
- For charm baryons, J^{P} are from quark model prediction except for $\Lambda_{\mathrm{c}}(2880)^{+}$

Precise mass and width measurement of Σ_{c} baryons

Isospin mass splittings of $\boldsymbol{\Sigma}_{\mathrm{c}}$

- Naïve expectation:
- $\mathbf{m}(\mathbf{u})<\mathbf{m}(\mathbf{d}) \rightarrow \mathbf{m}\left(\Sigma_{\mathrm{c}}{ }^{++}\right)($uuc $)<\mathbf{m}\left(\Sigma_{\mathrm{c}}{ }^{0}\right)($ ddc $)$
- Experimental measurement
- $m\left(\Sigma_{c}(2455)^{++}\right)-m\left(\Sigma_{c}(2455)^{0}\right)=0.24 \pm 0.09 \mathrm{MeV}$ (PDG)
- Σ hyperons : $m\left(\Sigma^{+}\right)($uus $)<m\left(\Sigma^{-}\right)$(dds) as expected,
- Theoretical models
- Electromagnetic potential, hyperfine interaction
- Experimental accuracy is still not enough to conclude the mass ordering ($<\mathbf{3 \sigma}$). \rightarrow High precision measurement at Belle!

$\operatorname{Mass}\left(\Lambda_{c}^{+} \pi^{*}\right)-\mathrm{Mass}\left(\mathrm{N}_{\mathrm{c}}^{+}\right)\left[\mathrm{MeV} / \mathrm{c}^{2}\right]$

Results from Belle
PRD 89, 0911202 (2014)

$\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$	$\mathrm{m}\left(\Sigma_{\mathrm{c}}\right)-\mathrm{m}\left(\Lambda_{c}{ }^{+}\right)$	Decay widths (Γ)
$\Sigma_{c}(2455)^{0}$	$167.29 \pm 0.01 \pm 0.02$	$1.76 \pm 0.04{ }^{+0.09}{ }_{-0.21}$
$\Sigma_{c}(2455)^{++}$	$167.5\| \pm 0.0\| \pm 0.02$	$1.84 \pm 0.04{ }^{+0.07}{ }_{-0.20}$
$\Sigma_{c}(2520)^{0}$	$231.98 \pm 0.11 \pm 0.04$	$\mathrm{I} 5.4 \mathrm{I} \pm 0.4 \mathrm{I}^{+0.20}{ }_{-0.32}$
$\Sigma_{c}(2520)^{++}$	$231.99 \pm 0.10 \pm 0.02$	$14.77 \pm 0.25^{+0.18}{ }_{-0.30}$

	- Fit model ...-. Background $\begin{aligned} & N\left(\Sigma_{\mathrm{c}}(2455)^{++}\right)=35984 \pm 311 \\ & N\left(\Sigma_{\mathrm{c}}(2520)^{++}\right)=43728 \pm 511 \\ & \chi^{2} / \mathrm{hdf}=0.98 \end{aligned}$

Factor 4 improvement of mass determination.

- Belle confirmed $\mathrm{m}\left(\Sigma_{\mathrm{c}}{ }^{++}\right)>\mathrm{M}\left(\Sigma_{\mathrm{c}}{ }^{0}\right)$ with more than 10σ.
- Precise input to understand wave functon.

($\mathrm{MeV} / \mathrm{c}^{2}$)	$\mathrm{m}\left(\Sigma_{\mathrm{c}}\right)-\mathrm{m}\left(\Lambda_{c}{ }^{+}\right)$	Decay widths (Γ)
$\Sigma_{c}(2455)^{0}$	$167.29 \pm 0.01 \pm 0.02$	$1.76 \pm 0.04^{+0.09}{ }_{-0.21}$
$\Sigma_{c}(2455)^{++}$	$167.51 \pm 0.0 \mid \pm 0.02$	$1.84 \pm 0.04{ }^{+0.07}{ }_{-0.20}$
$\Sigma_{c}(2520)^{0}$	$231.98 \pm 0.11 \pm 0.04$	$15.41 \pm\left. 0.4\right\|^{+0.20}{ }_{-0.32}$
$\Sigma_{c}(2520)^{++}$	$231.99 \pm 0.10 \pm 0.02$	$14.77 \pm 0.25^{+0.18}{ }_{-0.30}$

Slide from S. Lee' talk at LLWI 2015

Charm strange baryons, Ξ_{c}, Ω_{c}

Charmed strange baryons Ξ_{c}, (usc, dsc)

- Belle observed $\Xi_{c}(2980) /(3080)^{+/ 0}$ in $\Lambda_{c}{ }^{+} K \pi$.
- BaBar confirmed them and reported $\Xi_{\mathrm{c}}(3055) /(3123)^{+}$in $\Sigma_{\mathrm{c}}{ }^{(*)++} \mathrm{K}^{-}$.
- They are not confirmed yet and isospin partners are not observed.

New results by Belle
$\mathrm{M}\left(\Sigma_{\mathrm{c}}(2455)^{++} \mathrm{K}^{-}\right)$

$\mathrm{M}\left(\Sigma_{\mathrm{c}}(2520)^{++} \mathrm{K}^{-}\right)$

- Peaks of $\Xi_{\mathrm{c}}(2980)^{+}, \Xi_{\mathrm{c}}(3055)^{+}, \Xi_{\mathrm{c}}(3080)^{+}$Peaks of $\Xi_{\mathrm{c}}(3080)^{+}$, but no $\Xi_{\mathrm{c}}(3123)^{+}$
- $\Xi_{\mathrm{c}}(3055)^{+}$is confirmed with 6.6σ.
- Upper Limit

$$
\begin{gathered}
\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \Xi_{\mathrm{c}}(3123)^{+} \mathrm{X}\right) \cdot \operatorname{Br}\left(\Xi_{\mathrm{c}}(3123)^{+} \bullet \Lambda_{\mathrm{c}}^{+}\right) \\
\quad=0.34 \mathrm{fb} \Leftrightarrow 1.6 \pm 0.6 \pm 0.2 \mathrm{fb} \text { by BaBar }
\end{gathered}
$$

Results of AD decay

$-\Xi_{\mathrm{c}}(3055)^{+}(11.7 \sigma), \Xi_{\mathrm{c}}(3080)^{+}(4.7 \sigma)$ in $\Lambda \mathrm{D}^{+}$

- Further confirmation of $\Xi_{\mathrm{c}}(3055)^{+}$

- $\Xi_{\mathrm{c}}(3055)^{0}(7.6 \sigma), \Xi_{\mathrm{c}}(3080)^{0}(2.6 \sigma)$ in $\Lambda \mathrm{D}^{0}$
- First observation of $\Xi_{\mathrm{c}}(3055)^{0}$
- Decay modes should be related to wave function.
- $\rho(\mathrm{q}-\mathrm{q})$ or λ (c-diquark) mode which can fit?

Radiative decay of excited Ω_{c} (ssc)

- General purpose detector : sensitive to charged paritcles and γ
- Excited Ω_{c} below pionic decay threshold is found.
- What about Ω hyperons? \rightarrow Further study in Belle and BaBar data is awaited.

PRL 97, 232001 (2006)

PLB672(2009) 1-5

Quantum number determination

$-\mathrm{J}^{\mathrm{P}}$ assignment of charmed baryons are mostly from quark model.

- BaBar determined spin of $\Sigma_{\mathrm{c}}(2455)$ in $\mathrm{B}^{-} \rightarrow \Sigma_{\mathrm{c}}(2455)^{0} \mathrm{p}^{\mathrm{bar}}$ as $1 / 2$.

- BaBar measured spin of $\Xi(1530)$ hyperon as $3 / 2$ from $\Lambda_{c}{ }^{+} \rightarrow \Xi \Xi^{-} \pi^{+} \mathrm{K}^{+}$.
- BaBar determined spin of Ω^{-}as $1 / 2$ from $\Xi_{\mathrm{c}} \rightarrow \Omega \mathrm{K}$ decay, PRL97, 112001(2006).
- Application for other resonances are interesting tasks for Belle, Belle II.

19

\mathbf{J}^{P} of $\left.\mathbf{\Lambda}_{\mathbf{c}} \mathbf{(2 8 8 0}\right)^{+}$at Belle

Application for other states is possible at Belle and Belle II.

Search for Ξ_{cc}

SELEX, BaBar and Belle results

- Evidence in $\mathrm{M}\left(\Lambda_{\mathrm{c}}{ }^{+} \mathrm{K}^{-} \pi^{+}\right)$from SELEX at 3.52 GeV
- Not seen in BaBar ($232 \mathrm{fb}^{-1}$) and Belle ($462 \mathrm{fb}^{-1}$) data.
- Search using Belle full statistics has been performed.

No evidence.
95\% UL of $\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \bar{E}_{c c} \mathrm{X}\right) \times \operatorname{Br}\left(\overline{\mathrm{cc}}{ }^{+} \rightarrow{ }_{{ }_{c}}{ }^{0} \pi^{+}\right) \times \operatorname{Br}\left(\overline{\mathrm{c}}^{+} \rightarrow{ }^{-} \pi^{+}\right)$ $0.076-0.35 \mathrm{fb} \Leftrightarrow$ Theory 0.18-0.5 fb ($\mathrm{Br}=5 \%$)

- LHCb also has negative result.

Absolute BR of $\Lambda_{c}{ }^{+}$

Absolute BR of $\boldsymbol{\Lambda}_{\mathbf{c}}{ }^{+}$

■ PDG: $\operatorname{BR}\left(\Lambda_{\mathrm{c}}^{+} \rightarrow \mathrm{p} \mathrm{K} \pi^{+}\right)=5.0 \pm 1.3 \%$

- Combinaition of model-dependent measurements

■ Normalization BR for charmed baryons
$\square \mathrm{e}^{+} e^{-} \rightarrow c \bar{c} \rightarrow D_{t a g} \bar{p} \pi^{+} \Lambda_{c}^{+}, \quad \mathrm{D}_{\text {tag }}=\mathrm{D}^{(*)-}$
$\mathrm{M}_{\text {miss }}\left(D_{\text {tag }} X_{\text {frag }} p\right)=\sqrt{\left(p_{e^{+}}+p_{e^{-}}-p_{D_{t a g}}-p_{X_{f r a g}}-p_{p}\right)^{2}}$

Absolute BR of $\boldsymbol{\Lambda}_{\mathbf{c}}{ }^{+}$

■ Exclusive $\Lambda_{c}{ }^{+}$sample within inclusive sample: all tracks from $\Lambda_{c}^{+} \rightarrow \mathrm{p} \mathrm{K} \pi^{+}$required

- Exclusive signal from $\mathrm{M}_{\text {miss }}$ for $\mathrm{M}\left(\mathrm{pK}^{-} \pi^{+}\right)$in Λ_{c} signal region minus yield in sidebands

- $\operatorname{Br}\left(\Lambda_{\mathrm{c}}{ }^{+} \rightarrow \mathrm{pK}^{-} \pi^{+}\right)=\left(6.84 \pm 0.24^{+0.21}{ }_{-0.27}\right) \%$
- Slightly higher value than PDG with high precision.

■ Significant improvement of current PDG value

$$
\operatorname{PDG}(5.0 \pm 1.3 \%)
$$

Source	Uncertainty [\%]
Tracking	1.1
Proton ID	0.4
Efficiency	1.1
Dalitz model	1.1
$f_{\text {bias }}$	1.5
Bkg. subtraction	${ }_{-0.9}^{+0.5}$
Fit Model	${ }_{-2.9}^{+1.7}$
Total	${ }_{-3.9}^{+3.0}$

Baryon production rates

Baryon production rate in $\mathbf{e}^{+} \mathbf{e}^{-}$collision

- Inclusive $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{h}+\mathrm{X}$ cross section

$$
\frac{\sigma}{\sigma_{h a d}(2 J+1)} \propto \exp \left(-\alpha m_{h a d}\right)
$$

- Relativistic-string model S.B. Chun \& C.D. Buchanan, PLB 308(1993)153
- Thermodynamical model, F. Becattini Z.Phys. C69 (1996) 485
- Higher rate for Λ and $\Lambda(1520)$ in LEP.
- $\mathrm{J}=0$, light (ud) di-quark in Λ ?
R.L.Jaffe, Phys.Rept.409, 1 (2005)
- Higher rate for $\Lambda(1520)$ in ARGUS.
- Feed down subtraction to Λ ?
- How about charmed baryons?

O LEP $\sqrt{ } \mathrm{s}=92 \mathrm{GeV}$
OARGUS $\sqrt{ } \mathrm{s}=10.5 \mathrm{GeV}$

\rightarrow Check with high precision Belle data!

Preliminary results from Belle

- Feed down to $\Lambda, \Sigma, \Sigma^{*}, \Lambda_{c}$ were subtracted
- Enhancement of $\Lambda, \Lambda(1520)$ is not clear.
- ARGUS observation on $\Lambda(1520)$ is not confirmed.
- Suppression of Ω^{-}
$-\mathrm{g} \rightarrow$ ss suppress? Check Ξ^{*}
- no $\mathrm{J}=0$ diquark?

■ High rate for $\Lambda_{c}(2625)^{+}$

- Due to good diquark in Λ_{c} 's?
- Continue study

$$
1 / 2^{-} \Lambda_{c}(2595)^{+}, 5 / 2^{+} \Lambda_{c}(2880)^{+}
$$

- Ω_{c} :no measurement of BR
- phenomenological calculation.
- $\operatorname{BR}(0.24 \pm 0.12 \%)$
- Theoretical input is needed!

Summary

- Charged charmonium-like states are established.
$-J^{\mathrm{P}}=1^{+}$for $\mathrm{Z}_{\mathrm{c}}(4430), \mathrm{Z}_{\mathrm{c}}(3900)$ and $\Gamma\left(\mathrm{DD}^{*}\right) / \Gamma(\mathrm{J} / \psi)$ of $\mathrm{Z}_{\mathrm{c}}(3900)$ are obtained.
- $\mathrm{J} / \psi \pi\left(\psi^{\prime} \pi\right)$ or D^{*} molecule, c $\overline{\mathrm{c}}$ core is there?
- More states have been discovered.
- Charmed baryon spectroscopy
- Precise measurement of Σ_{c} isospin mass spliting. $\Delta \mathrm{m}\left(\Sigma_{\mathrm{c}}{ }^{++}-\Sigma_{\mathrm{c}}{ }^{0}\right)=0.22 \pm 0.014 \mathrm{MeV}$
- Comparison with quark model to obtain wave function.
- Spectroscopy of excited Ξ_{c} 's and Ω_{c}.
- Mass, width, decay mode measurements.
- Can we distinguish diquark (ρ, λ) excitation?
- J^{P} assignments. $5 / 2^{+}: \Lambda_{\mathrm{c}}(2880)^{+}, 1 / 2: \Sigma_{\mathrm{c}}(2455), 3 / 2: \Xi(1530), 1 / 2: \Omega$
- Search for double charmed baryon.
- Model independent absolute B.R. of Λ_{c}^{+}. $\left(6.84 \pm 0.24^{+0.21}{ }_{-0.27}\right) \%$
- What about $\Xi_{\mathrm{c}}, \Omega_{\mathrm{c}}$? Even model dependent estimation is helpful.
- Baryon production rates.
- Actively studied! More results will come from BaBar, Belle and Belle II

