Penta-quark states with strangeness, hidden charm and beauty

Jia-Jun Wu CSSM, University of Adelaide

Bing-Song Zou Institute of Theoretical Physics, CAS, Beijing

Collaborate with Jun Shi, Chun-Shen An, Pu-Ze Gao, R. Molina, E. Oset, T. S. H. Lee, ...

Outline :

- 1. Introduction
- 2. Baryon spectroscopy with strangeness
- 3. From Strangeness to charm & beauty
- 4. Conclusions

1. Introduction Spectrum is important for us to understand the structure of particles.

 \rightarrow

- atomic spectrum
- nuclear spectrum
- hadron spectrum
- \rightarrow atomic quantum theory
- \rightarrow shell model, collective motion
 - ? Important discovery

1. Introduction Spectrum is important for us to understand the structure of particles.

 \rightarrow

 \rightarrow

- atomic spectrum nuclear spectrum hadron spectrum
- \rightarrow atomic quantum theory

(ddd)

 \sum^{*}

 (\overline{dss})

(dds)

shell model, collective motion

 \triangle^0

(udd)

++

 Σ^{*+}

 $\frac{\Xi^{*0}}{(uss)}$

(uus)

(uud)

 $\Omega^{-}(sss)$

 Σ^{0}

m_O.≅ 1670 MeV

(uds)

(uuu)

3/2 +

3

? Important discovery

PDG

- $\Lambda^{*}(1405)$, $\Lambda^{*}(1670)$
- $N^{*}(1535)$, $N^{*}(1650)$

Σ*(1620)

 $2 \Xi^{*}(1620)$, $2\Xi^{*}(1670)$

PDG $\Lambda^*(1405)$, $\Lambda^*(1670)$ N*(1535), N*(1650)? $\Sigma^*(1620)$

3q-quark Mass Order Reverse uds (L=1) $1/2^- \sim \Lambda^*(1405)$ uud (L=1) $1/2^- \sim N^*(1535)$

PDG $\Lambda^*(1405)$, $\Lambda^*(1670)$ N*(1535), N*(1650)? $\Sigma^*(1620)$

3q-quark Mass Order Reverse uds (L=1) $1/2^- \sim \Lambda^*(1405)$ uud (L=1) $1/2^{-} \sim N^{*}(1535)$ d ū gluons \rightarrow qq : crucial for quark confinement and hadron structure

to be more challenging than atomic and nuclear structures

The number of constituents in a hadron is not a constant!

PDG $\Lambda^*(1405)$, $\Lambda^*(1670)$ N*(1535), N*(1650)? $\Sigma^*(1620)$

- $\Lambda^*(1405) \sim [ud][su] \overline{u}$
- $N*(1535) \sim [ud][us] \overline{s}$

$$\Sigma^*(1390) \sim [us][ud] \overline{d}$$

$$\Lambda^*(1670) \sim [us][ds] \overline{s}$$

Zou et al, NPA835 (2010) 199 ; CLAS, PRC87(2013)035206

gluons → qq: crucial for quark confinement to be more challenging than and hadron structure atomic and nuclear structures

The number of constituents in a hadron is not a constant!

The breathing mode for the N*(1535)

Strange decays of N*(1535) : **PDG** \rightarrow **large g**_{N*Nn}

J/ ψ → pN* → p (KA) / p (pη) → large g_{N*KA} Liu&Zou, PRL96 (2006) 042002; Geng,Oset,Zou&Doring, PRC79 (2009) 025203 γp → pη' & pp→ppη' → large g_{N*Nη'} M.Dugger et al., PRL96 (2006) 062001; Cao&Lee, PRC78(2008) 035207 π - p → n ϕ & pp → pp ϕ & pn → d ϕ → large g_{N*N ϕ} Xie, Zou & Chiang, PRC77(2008)015206; Cao, Xie, Zou & Xu, PRC80(2009)025203

Important implications:

 \Box qqqqq in S-state more favorable than qqq with L=1 !

$1/2^{-}$ baryon nonet ~ $\overline{q}q^2q^2$ state + ...

multiquark components are important for hadrons!

Alternative pictures :

Hadronic molecules

Penta-quark states

- **N*(1440)** ~ Nσ
- N*(1535) ~ KΣ-KΛ
- $\Lambda^*(1405) \sim \text{KN-}\Sigma\pi$

N*(1440) ~ [ud][ud] <u>q</u> N*(1535) ~ [ud][us] s

 $\Lambda^*(1405) \sim [ud][sq] \overline{q}$

Kaiser, Weise, Oset, Ramos, Oller, Meissner, Hyodo, Jido, Hosaka, ...

Successful extension to 3/2⁻ baryon nonet, 1⁺ & 2⁺ meson nonets Oset et al.

Outline :

- 1. Introduction
- 2. Baryon spectroscopy with strangeness
- 3. From Strangeness to charm & beauty
- 4. Conclusions

Experiment knowledge on hyperon states still very poor !

 Ω^* in PDG:

**** Ω(1672) 3/2+,
*** Ω (2250)
** Ω (2380), Ω (2470)

Ξ^* in PDG:

**** E(1320) 1/2+, E(1530) 3/2+
*** E(1690), E(1820) 3/2-, E(1950), E(2030)
** E(2250), E(2370)
* E(1620), E(2120), E(2500)

Σ^* in PDG

	Σ (1189)1/2 ⁺ Σ *(1385)3/2 ⁺	$\Sigma^*(1670)3/2^-$
****	$\Sigma^{*}(1775)5/2^{-}$ $\Sigma^{*}(1915)5/2^{+}$	$\Sigma^{*}(2030)7/2^{+}$
***	$\Sigma^*(1660)1/2^+$ $\Sigma^*(1750)1/2^-$ $\Sigma^*(2250)??$	Σ*(1940)3/2 -
	$\Sigma^{*}(1620)1/2^{-}$ $\Sigma^{*}(1690)??$	Σ*(1880)1/2 +
**	$\Sigma^{*}(2080)3/2^{+}\Sigma^{*}(2455)??$	Σ*(2620)??
	$\Sigma^{*}(1480)$?? $\Sigma^{*}(1560)$??	Σ*(1580)3/2 -
*	$\Sigma^{*}(1770)1/2^{+}\Sigma^{*}(1840)3/2^{+}$	Σ*(2000)3/2 -
	$\Sigma^{*}(2070)5/2^{+}$ $\Sigma^{*}(2100)7/2^{-}$	Σ*(3000)??
	Σ*(3170)??	
All fro	om old experiments of	1970-1985 !!

No established $1/2^- \Sigma^*$, Ξ^* , Ω^* !

10

New results on $\Sigma^* \& \Lambda^*$ from CB data

Crystal Ball: Prakhov et al., PRC 80(2009) 025204 $K^- + p \rightarrow \pi^0 + \Lambda$ & $K^- + p \rightarrow \pi^0 + \Sigma^0$ p_K=514-750 MeV, $\sqrt{s} = 1569 - 1676$ MeV

The high precision new data can give valuable information on $\Sigma^* \& \Lambda^*$

1)P.Gao, J.Shi, B.S.Zou, PRC86 (2012) 025201 2) J.Shi, B.S.Zou, PRC91(2015) 035202

P.Gao, J.Shi, B.S.Zou, PRC86 (2012) 025201

 $K^- + p \rightarrow \pi^0 + \Lambda \text{ (new) \& } K^- + n \rightarrow \pi^- + \Lambda \text{ (old)}$

Basic ingredients:

 $\Sigma(1189)1/2^+, \Sigma(1385)3/2^+, \Sigma(1775)5/2^-, \Sigma(1670)3/2^-, t-K^*, u-P$

Addition: $\sum \frac{1/2^{+}}{3/2^{+}} \frac{\chi^2 = 572}{\chi^2 = 572 + 327}$ (data 348; $\frac{1/2^{-}}{3/2^{+}} \frac{\chi^2 = 572 + 327}{\chi^2 = 572 + 371}$ para: 18) $3/2^{-} \chi^2 = 572 + 820$

P.Gao, J.Shi, B.S.Zou, PRC86 (2012) 025201

 $K^- + p \rightarrow \pi^0 + \Lambda \text{ (new) \& } K^- + n \rightarrow \pi^- + \Lambda \text{ (old)}$

 $\Sigma(1660)1/2^+$ is definitely needed, while $\Sigma(1620)1/2^-$ is not needed at all !

P.Gao, J.Shi, B.S.Zou, PRC86 (2012) 025201

$$K^- + p \rightarrow \pi^0 + \Lambda \text{ (new) \& } K^- + n \rightarrow \pi^- + \Lambda \text{ (old)}$$

 $\Sigma(1660)1/2^+$ is definitely needed, while $\Sigma(1620)1/2^-$ is not needed at all !

CB A Polarization data is crucial for discriminating $\Sigma(1620)1/2^-$ from $\Sigma(1635)$ $1/2^+$.

PDG2014 downgrades Σ(1620)1/2⁻ from ** to *

.u-P

J.Shi, B.S.Zou, PRC91(2015) 035202

 $K^- + p \rightarrow \pi^0 + \Sigma^0$ (new)

 $\Lambda^{*}(1680)3/2^{+}$ replaces $\Lambda^{*}(1690)3/2^{-****}$

Basic ingredients: Λ(1115)1/2+, Λ(1405)1/2-, Λ(1520)3/2-, Λ(1670)1/2-, Λ(1690)3/2-, t-K*,u-P

Addition:

	Only $d\sigma/d\Omega$	$d\sigma/d\Omega + P(VA)$	$d\sigma/d\Omega + P (UCLA)$
data	236	308	360
$1/2^{+}$	1576.3	1575.0	1557.1
3/2+	1679.8	1687.0	1665.6
3/2-	1511.2	1506.0	1585.4
χ2	419	551	882

J.Shi, B.S.Zou, PRC91(2015) 035202

 $K^- + p \rightarrow \pi^0 + \Sigma^0$ (new)

 $\Lambda^{*}(1680)3/2^{+}$ replaces $\Lambda^{*}(1690)3/2^{-****}$

Basic ingredients: A(1115)1/2+, A(1405)1/2-, A(1520)3/2-, A(1670)1/2-, A(1690)3/2-, t-K*,u-P

Addition:		Only $d\sigma/d\Omega$	$d\sigma/d\Omega + P(VA)$	$d\sigma/d\Omega + P (UCLA)$
$\Lambda(1600)1/2 \perp$	data	236	308	360
$\Lambda(1600)1/2+$ $\Lambda(1600)2/2+$	$1/2^+$	15/6.3	1575.0	1557.1
$\Lambda(1080)3/2+$	$\frac{3}{2^+}$	16/9.8	168/.0	1665.6
Modification of $\Lambda(1520)^2/2^{-2}$ to it	3/2	1511.2	1506.0	1585.4
A(1520)5/2 s tall	χ2	419	551	882

J.Shi, B.S.Zou, PRC91(2015) 035202

 $K^- + p \rightarrow \pi^0 + \Sigma^0$ (new)

 $\Lambda^{*}(1680)3/2^{+}$ replaces $\Lambda^{*}(1690)3/2^{-****}$

Basic ingredients: Λ(1115)1/2+, Λ(1405)1/2-, Λ(1520)3/2-, Λ(1670)1/2-, Λ(1690)3/2-, t-K*,u-P

Addition:		Only $d\sigma/d\Omega$	$d\sigma/d\Omega + P(VA)$	$d\sigma/d\Omega + P (UCLA)$
	data	236	308 ` ´	360
A(100)1/2	$1/2^{+}$	1576.3	1575.0	1557.1
$\Lambda(1000)1/2+$	3/2+	1679.8	1687.0	1665.6
$\Lambda(1680)3/2+$	3/2-	1511.2	1506.0	1585.4
Modification of	χ2	419 540	551	882
$\Lambda(1520)3/2^+$'s tail	Λ(1690)3/2 ⁻ δ χ2	0.9	0.6	3.2

Mechanisms for qq pair production

1)C.S.An, B.S.Zou, PRC89(2014) 055209 2)C.S.An, B.C.Metsch, B.S.Zou, PRC 87(2013) 065207

for baryon $sss \rightarrow sss \overline{q}q$

$$H = \begin{pmatrix} H_3 & V_{\Omega_3 \leftrightarrow \Omega_5} \\ V_{\Omega_3 \leftrightarrow \Omega_5} & H_5 \end{pmatrix}$$

			INS					NJL		
$\frac{1}{2}^{-}$	1796	1888	2030	2226	2432	1810	1816	1942	2255	2475
$\left 3,\frac{1}{2}^{-}\right\rangle$	0.1494	0.9854	0.0687	0.0425	-0.0096	0.0000	0.0000	1.0000	0.0000	0.0000
$5, \frac{1}{2}^{-}$	0.6650	-0.1563	0.7146	0.1097	- 0.1031	1.0000	0.0000	0.0000	0.0000	0.0000
$\left 5,\frac{1}{2}^{-}\right\rangle_{2}$	0.7318	-0.0592	-0.6630	-0.1066	0.1003	0.0000	0.9999	0.0000	-0.0140	0.0000
$\left 5,\frac{1}{2}^{-}\right\rangle_{3}$	0.0002	0.0301	0.1887	-0.9475	0.2563	0.0000	0.0140	0.0000	0.9999	0.0000
$\left 5,\frac{1}{2}^{-}\right\rangle_{4}$	-0.0036	-0.0089	0.0967	0.2775	0.9558	0.0000	0.0000	0.0000	0.0000	1.0000
$\frac{3}{2}^{-}$	1767	1991	2093	2193	2722	1786	1818	1972	2257	2475
$\left 3,\frac{3}{2}^{-}\right\rangle$	0.8356	-0.0473	0.3243	-0.4353	-0.0692	0.4227	-0.0354	-0.9002	0.0905	0.0389
$\left 5,\frac{3}{2}^{-}\right\rangle_{1}$	-0.3013	0.7715	0.2032	-0.4772	-0.2120	-0.5385	-0.8135	-0.2185	0.0217	0.0023
$\left 5,\frac{3}{2}^{-}\right\rangle_{2}$	0.2941	0.5539	0.1523	0.5306	0.5495	0.7286	-0.5803	0.3635	-0.0127	-0.0036
$\left 5,\frac{3}{2}^{-}\right\rangle_{3}$	-0.3518	-0.3089	0.7586	-0.1450	0.4294	0.0175	-0.0136	-0.0916	-0.9955	-0.0049
$\left(5, \frac{3}{2}^{-}\right)_{4}$	-0.0244	-0.0169	-0.5049	-0.5294	0.6812	-0.0125	0.0011	0.0364	-0.0085	0.9992

Predictions for the lowest \Omega^* by various models:

 $\Omega^*(x/2^-)$ as sss (L=1): ~ 2020 MeV Chao, Isgur, Karl, PRD38(1981)155

Ω*(1/2⁻) as **K**Ξ bound state: ~ 1805 MeV W.L.Wang, F.Huang, Z.Y.Zhang, F.Liu, JPG35 (2008) 085003

 $\Omega^{*}(x/2^{-})$ as usss (L=0): ~ 1820 MeV Yuan-An-Wei-Zou-Xu, PRC87(2013)025205

Ω*(3/2⁻) as sss - uusss mixture : ~ 1780 MeV by instanton/NJL interaction An-Metsch-Zou, PRC87(2013) 065207; An-Zou, PRC89 (2014) 055209 Very important to find the lowest Ω^* (1/2-or 3/2-) $\psi(2S) \rightarrow \overline{\Omega}\Omega$ BR = $(5 \pm 2) \times 10^{-5}$ M. Ablikim et al. (BESII Coll.), CPC36(2012)1040 $\psi(2S) \rightarrow \overline{\Omega}\Omega^*$ with $\Omega^* \rightarrow \gamma \Omega$ $3700 - 1670 \implies 2030$

→ excitation mechanism for sss states

The summary of the results for strangeness hadron

	Our analysis	Unquenched	Quenched	PDG
Σ* (1/2-) Gao- Xie-V Chen Wu-I	1380 Wu-Zou PRC81,055203 Wu-Zou PRC90, 055204 -Zou PRC88, 024304 Dulat-Zou PRD 80, 01750	1360 - 1420 S. L. Zhu, etc. HEPNP29(2005)250 03; 81,045210;	1650 0	1620 ** → *
Σ*(1/2+)	1633 P.Gao, J.Shi, B.S.Zou, PRC86 (2012) 025201	1630&1656 Torres-Khemehandami EPJA35 (2008) 295	-Oset 1720	1660 ***
Λ*(3/2+)	1680	1700	1900	1890 ***
	J.Shi, B.S.Zou, PRC91(2015) 035202	C. Helminen, D. O. R NPA 699(2002) 624	Liska, S. Capstick, N. Isgur, PRD 34 , 2809 (1986); S.Capstick, W. Roberts PPNP 45 , S241(2000)	5,
$\Omega^{*}(3/2-)$?	1780	2020	-
	An-Metsch-Zou, P An-Zou, PRC89 (2	RC87(2013) 065207; 2014) 055209	Chao, Isgur, Karl, PRD38	(1981)155

Strong support for unquenched quark model!

Outline :

- 1. Introduction
- 2. Hadron spectroscopy with strangeness
- 3. From Strangeness to charm & beauty
- 4. Conclusions

3. From strangeness to charm & beauty

Many N* & Λ^* are proposed dynamically generated states and multi-quark states

Problem:

None of them can be clearly distinguished from qqq due to tunable ingredients and possible large mixing of various configurations

PDG2010: "The clean Λ_c spectrum has in fact been taken to settle the decades-long discussion about the nature of the $\Lambda(1405)$ —true 3-quark state or mere KN threshold effect? unambiguously in favor of the first interpretation."

although Λ_c (2595) 1/2⁻ was proposed to be DN molecule by Tolos et al., CPC33(2009)1323. Haidenbauer et al., EPJA47(2011)18

Solution:	Extensio	n to hidden charm and beauty for baryons
N*(1535)	_ ssuud	
N*(4260)	ccuud	J.J.Wu, R.Molina, E.Oset, B.S.Zou. Phys.Rev.Lett. 105 (2010) 232001
N*(11050)	bbuud	J.J.Wu, L.Zhao, B.S.Zou. PLB709(2012)70
Λ*(1405)	qquds	
Λ*(4210)	ccuds	J.J.Wu, R.Molina, E.Oset, B.S.Zou. Phys.Rev.Lett. 105 (2010) 232001
Λ*(11020)	b buds	J.J.Wu, L.Zhao, B.S.Zou. PLB709(2012)70

KΣ, **Kp** → **D**Σ_c, **D**_sΛ_c → **B**Σ_b, **B**_sΛ_b bound states

J.J.Wu, R.Molina, E.Oset, B.S.Zou, PRL 105 (2010) 232001 J.J.Wu, T.S.H.Lee, B.S.Zou, PRC85(2012)044002 J.J.Wu, L.Zhao, B.S.Zou. PLB709(2012)70

	(I,S)	z_R (MeV)		g_a	
N*	(1/2, 0)		$\bar{D}\Sigma_c$	$\bar{D}\Lambda_{c}^{+}$	
		4269	2.85	0	
	(0, -1)		$\bar{D}_s \Lambda_c^+$	$\overline{D}\Xi_c$	$\overline{D}\Xi'_{c}$
∧ *		4213	1.37	3.25	0
		4403	0	0	2.64

TABLE III: Pole positions z_R and coupling constants g_a for the states from $PB \rightarrow PB$.

(I,S)	z_R (MeV)		g_a	
(1/2, 0)		$\bar{D}^* \Sigma_c$	$\bar{D}^* \Lambda_c^+$	
	4418	2.75	0	
(0, -1)		$\bar{D}_{s}^{*}\Lambda_{c}^{+}$	$\bar{D}^* \Xi_c$	$\bar{D}^* \Xi'_c$
	4370	1.23	3.14	0
	4550	0	0	2.53

N*

 Λ^*

TABLE IV: Pole position and coupling constants for the bound states from $VB \rightarrow VB$.

	(I, S)	M	Г			Γ	i		
N *	(1/2, 0)			πN	ηN	$\eta' N$	$K\Sigma$		$\eta_c N$
- 1		4261	56.9	3.8	8.1	3.9	17.0		23.4
	(0, -1)			$\bar{K}N$	$\pi\Sigma$	$\eta \Lambda$	$\eta'\Lambda$	$K\Xi$	$\eta_c \Lambda$
Λ^*		4209	32.4	15.8	2.9	3.2	1.7	2.4	5.8
		4394	43.3	0	10.6	7.1	3.3	5.8	16.3

TABLE V: Mass (M), total width (Γ) , and the partial decay width (Γ_i) for the states from $PB \rightarrow PB$, with units in MeV.

	(I, S)	M	Г			Г	i		
N *	(1/2, 0)			ρN	ωN	$K^*\Sigma$			$J/\psi N$
- 1		4412	47.3	3.2	10.4	13.7			19.2
	(0, -1)			K^*N	$\rho\Sigma$	$\omega \Lambda$	$\phi \Lambda$	$K^*\Xi$	$J/\psi\Lambda$
Λ^*		4368	28.0	13.9	3.1	0.3	4.0	1.8	5.4
••		4544	36.6	0	8.8	9.1	0	5.0	13.8

TABLE VI: Mass (M), total width (Γ) , and the partial decay width (Γ_i) for the states from $VB \rightarrow VB$ with units in MeV.

Super-heavy narrow N* and Λ* with hidden charm Definitely not qqq states ! 25

Hidden charm N* by other approaches

DΣ_c + **D***Σ_c coupled channel state ~ 4.23 GeV T. Uchino, W.H.Liang, E.Oset, arXiv:1504.05726

DΣ_c state in a chiral quark model ~ 4.3 GeV W.L.Wang, F.Huang, Z.Y.Zhang, B.S.Zou, PRC84(2011)015203

 $\overline{D\Sigma}_{c}$ state in EBAC-DCC model ~ 4.3 GeV J.J.Wu, T.S.H.Lee, B.S.Zou, PRC85(2012)044002

DΣ_c state in Schoedinger Equation method ~ 4.3 GeV Z.C.Yang, Z.F. Sun, J. He, X.Liu, S.L.Zhu, CPC36(2012)6

ccqqq with 3 kinds of qq hyperfine interaction ~ 4.1 GeV S.G.Yuan, K.W.Wei, J.He, H.S.Xu, B.S.Zou, EPJA48(2012)61

 $\overline{D}\Sigma_{c} - \eta_{c}N - \eta'N$ coupled channel state ~ 3.5 GeV J. Hofmann, M.F.M. Lutz, Nucl. Phys. A 763 (2005) 90

cc-N bound states in topological soliton model ~ 3.9 GeV C. Gobbi, D.O. Riska, N.N. Scoccola, Phys. Lett. B 296 (1992) 166

Prediction for PANDA

27

~ 100 events per day at PANDA/FAIR by L=10³¹ cm⁻²s⁻¹

These Super-heavy narrow N* and Λ^* can be found at PANDA !

Prediction for 12GeV@JLab

Y. Huang, J.He, H.F.Zhang and X.R.Chen, JPG41, 115004 (2014)

29

Outline :

- 1. Introduction
- 2. Hadron spectroscopy with strangeness
- 3. From Strangeness to charm & beauty
- 4. Conclusions

4. Conclusions

- Hadron spectroscopy reveals unquenched quark picture
- Distinguishable prediction for hyperon spectroscopy is yelling for experimental confirmation
- Superheavy narrow N* and A* are predicted to exist $\overline{D}\Sigma_c, \ \overline{D}_s\Lambda_c \rightarrow B\Sigma_b, B_s\Lambda_b$ bound states ~ 4.2 GeV ~11 GeV isovector meson partners $Z_b(10610), Z_b(10650)$
- Experimental confirmation of them will unambiguously establish multiquark dynamics
- They can be looked for at 12GeV@Jlab and PANDA maybe also at JPARC, super-B, RHIC, EIC?

Xiao-Yun Wang, Xu-Rong Chen arXiv:1504.01075 K-p -> $\eta_c \Lambda$

Thanks !