Direct measurement of the $^{11}\text{C}(\alpha,p)^{14}\text{N}$ stellar reaction at CRIB

Seiya Hayakawa

Center for Nuclear Study, University of Tokyo

S. Kubono1, T. Hashimoto1, H. Yamaguchi1, B. Dam1, D. Kahl1, Y. Wakabayashi2, N. Iwasa3, N. Kume3, I. Miura3, T. Teranishi3, J.J. He5, Y.K. Kwon6, T. Komatsubara7, S. Kato8, S. Wanajo9

1Center for Nuclear Study, University of Tokyo

2Japan Atomic Energy Agency

3Tohoku University

4Kyushu University

5Institute of Modern Physics, Chinese Academy of Science

6Chung-Ang University

7University of Tsukuba

8Yamagata University

9Institute for the Physics and Mathematics of the Universe, University of Tokyo

The hot pp-chains are extended pp-chains up to $A = 11$ mass region close to the proton drip line in low-metallicity and high-mass stars where there are not enough CNO seeds to produce thermonuclear energy to stabilize themselves. ^{11}C is an unstable nuclide and possibly exists in one of the hot pp-chain branches. The $^{11}\text{C}(\alpha,p)^{14}\text{N}$ reaction could be an important breakout path from the pp-chain region to the CNO region, on which its contribution is estimated as large as of the triple-α process in some cases.

Recent simulations of the νp-process in type II supernovae also suggest that this reaction path could considerably contribute to synthesis of CNO elements at 1.5-3 GK and finally affect the amount of the nucleosynthesis around $A = 100$.

These theoretical predictions related to the $^{11}\text{C}(\alpha,p)^{14}\text{N}$ reaction are based on the Hauser-Feshbach cross section since there are experimental data only on the time-reverse reaction cross sections by activation method. The level density of the compound nucleus ^{15}O is as high as 8 states/MeV above the $^{11}\text{C}+\alpha$ threshold and the Hauser-Feshbach cross section for the $p + ^{14}\text{N}(\text{g.s.})$ channel agrees well with the experimental results. However, it remains possible that the time-reverse cross section data are not precise, or unknown cross section for the $p' + ^{14}\text{N}^*$ channels differ from the ones by Hauser-Feshbach calculation, or resonant processes are dominant at temperatures around 1 GK.

In order to reduce these uncertainties, the first direct measurement has recently been performed by means of the thick-target inverse-kinematics method with low-energy ^{11}C beams from the CNS Radioactive Ion Beam separator (CRIB). The setup simply consists of two beam profile monitors, a ^4He gas target and three sets of ΔE-E position-sensitive silicon telescopes. The experiment covered $E_{CM} = 0.5$-5 MeV which includes the corresponding stellar temperature range 1-3 GK. The excited states of the ^{14}N in the final channels were identified from the time-of-flight information between the beam monitor and the Si telescope. We will report the newly determined cross sections as well as the reaction rate.