High-resolution study of $^{37}\text{Cl}\rightarrow^{37}\text{Ar}$ Gamow-Teller transition via $^{37}\text{Cl}(^{3}\text{He},t)^{37}\text{Ar}$ reaction

Yoshihiro Shinbara

Graduate School of Science and Technology, Niigata University

Y. Fujita1, T. Adachi2, G. Berg3, B.A. Brown4, H. Fujimura5, H. Fujita6, K. Fujita7, K. Hara8, K.Y. Hara9, K. Hatanaka6, J. Kamiya6, K. Katori9, T. Kawabata10, K. Nakanishi11, G. Martinez-Pinedo12, N. Sakamoto6, Y. Sakemi5, Y. Shimizu11, T. Tameshige13, M. Uchida14, M. Yoshifuku1, M. Yosoi6, R. Zegers4

1*Department of Physics, Osaka University*
2*KVI*
3*Department of Physics, Notre Dame University*
4*NSCL, Michigan State University*
5*CYRIC, Tohoku University*
6*RCNP, Osaka University*
7*Department of Physics, Kyusyu University*
8*JAEA*
9*RIKEN*
10*Department of Physics, Kyoto University*
11*CNS, Tokyo University*
12*GSI*
13*HIMAC*
14*Department of Physics, Tokyo Institute of Technology*

The Gamow-Teller (GT) transition strengths from the ground state of 37Cl to the excited states in 37Al are important because 37Cl is used as a neutrino detector through 37Cl(ν,e)37Ar reaction. Up to now the neutrino cross section has been calculated based on the data from 37Ca beta-decay measurements, in which the isospin symmetry between 37Cl\rightarrow^{37}Ar and 37Ca\rightarrow^{37}K is assumed. However, the energy spectrum of the 37Cl(p,n)37Ar experiment showed differences from the 37Ca beta-decay data.

Recently, we performed a (p,n)-type 37Cl(3He,t)37Ar experiment at E=140MeV/nucleon, in which a high resolution of 30keV has been achieved. The GT strength distribution was obtained up to the excitation energy (Ex) of 14.2MeV. The obtained distribution was compared with that of the 37Ca beta-decay up to Ex=8.6MeV. The overall shape of the distributions were similar, but the details were not necessary the same. In order to understand those differences, the experimental data was compared with the shell model (SM) calculation using the USD interaction. The SM calculation suggests that a large L=2 component in the charge-exchange reaction can make those differences at lower energies. On the other hand, the differences seen at higher energies are due to the breaking of the mirror symmetry. Additionally, a neutrino cross section for the 8B solar neutrino source will be shown based on our data.