Storage-ring experiments for nuclear astrophysics at GSI

Christoph Scheidenberger

Facility overview

Experimental opportunities

Future directions

Emphasis on data for nuclear astrophysics:

• decay spectroscopy
• mass measurements
• reaction studies
• half-lives
Nucleosynthesis of the chemical elements

Nucleosynthesis in binary systems

Nucleosynthesis in AGB stars

Nucleosynthesis in supernovae

Fusion up to iron

Big Bang nucleosynthesis

Heavy nuclei (A>56) are mainly produced by s-process (~50%) and r-process (~50%)

OMEG-10, Osaka (Japan), March 8th-10th, 2010

Christoph Scheidenberger (GSI)
The need for reliable nuclear physics data

Consistent nuclear theory and/or experimental data needed!
Nuclear astrophysics in the laboratory

- SHE, masses, decay properties, half-lives, level energies, β-delayed n-emission
- LAND / R3B: photo-dissociation rates, $(n, \gamma), (p, \gamma)$ cross sections, $B(GT)$
- SHIP-Trap: masses, half-lives, (p, γ) rates, $B(GT)$
- Theory: nuclear rates, nucleosynthesis
Nuclear astrophysics in the laboratory

FRS
- half-lives
- level energies
- β-delayed n-emission

ESR
- masses
- half-lives
- (p,γ) rates
- $B(GT)$

SHIP-Trap
- SHE, masses
- decay properties

LAND / R3B
- photo-dissociation rates
- (n,γ), (p,γ) cross sections
- $B(GT)$

Theory
- nuclear reaction rates
- nucleosynthesis network calculations
Elementary reactions for the production of exotic nuclei

1GeV/u U + H

Experimental data:

V Ricciardi et al.,
PRC 73 (2006) 014607
Production of very neutron-rich isotopes

Cold fragmentation

\[
\sim 1\text{GeV/u } \text{Au} + \text{Be}
\]

Fission

\[
\sim 1\text{GeV/u } \text{U} + \text{Pb}
\]

Fragmentation

\[
\sim 1\text{GeV/u } \text{U} + \text{Be}
\]

J. Benlliure et al., NPA 660 (1999) 87

M. Bernas et al., Phys. Lett.

and to be published
Spectroscopy and β-decay studies at FRS

Q_β-measurement (I. Dillmann et al., PRL91, 162503 (2003))

^{130}Cd less bound than expected → "quenching" of N=82 shell closure?

Detailed spectroscopy, unambiguous identification, high granularity, high γ-efficiency
no indication of "shell quenching", no weakening of N=82-shell observed
Agreement with SM-calculations:
• level sequence
• energies
• transition rates

A. Jungclaus et al., PRL 99, 132501 (2007)
Storage, cooling, measurement

- Fast injection of fragments (bunch~400ns)

- Stochastic and electron cooling

- Relative momentum spread $\delta p/p$

- Schottky-noise detection

- Storage times: min. days
Storage, cooling, measurement

Fast injection of fragments (bunch~400ns)

Revolution-frequency measurement

Mass determination

Mass accuracy $5 \cdot 10^{-8}$ up to $5 \cdot 10^{-7}$
Masses of more than 1100 nuclides measured
Results: ~ 350 new mass values
~ 300 improved mass values
Storage, cooling, measurement

Fast injection of fragments (bunch~400ns)

Revolution-frequency measurement

Mass determination

Mass accuracy $5 \cdot 10^{-8}$ up to $5 \cdot 10^{-7}$
Masses of more than 1100 nuclides measured
Results: ~ 350 new mass values
~ 300 improved mass values
Storage, cooling, measurement

Fast injection of fragments (bunch~400ns)

Revolution-frequency measurement

Mass determination

Mass accuracy $5 \cdot 10^{-8}$ up to $5 \cdot 10^{-7}$
Masses of more than 1100 nuclides measured
Results: ~ 350 new mass values
~ 300 improved mass values
Mapping the mass surface: predictive power of mass models

HFB (BSk2)
S. Goriely, et al.,

$\sigma_{\text{rms}} = 650$ keV

In explosive szenarios (Novae, X-ray bursts, and SN) masses play a crucial role
- energy "generation" (→ light curves)
- pathways (→ final abundances)

Few data exist
- mass models (→ predictive power?)

H. Geissel, B. Pfeiffer, et al.,
β⁻- decay to bound states of the released electron

New radioactive decay mode

First experimental observation at ESR: $^{163}\text{Dy}/\text{Ho}^{66+}$
M. Jung et al., PRL 69, 2164 (1992)

Applications

Neutrino mass

$^{187}\text{Re}/\text{Os}$ cosmochronometer

Galactic age

$\nu < 265$ eV

$T_G = (15 \pm 1)$ Ga
Time-resolved decay studies: bound-state beta decay

T. Ohtsubo et al., PRL 95, 052501 (2005)
Branching ratio $\frac{\lambda_{\beta_b}}{\lambda_{\beta_c}}$

Theory

Decay rate of continuum beta decay:

$$\lambda_{\beta_c} = \sum_i \frac{g_i^2}{2\pi^3} |M_i|^2 f_i \quad \text{with} \quad f_i = \int_0^{W_0} pW(W_0 - W)^2 F(Z,W)S_i(W)dW$$

Decay rate of bound-state beta decay:

$$\lambda_{\beta_b}^{(k)} = \sum_i \frac{g_i^2}{2\pi^3} \frac{\pi}{2} |M_i|^2 \left|\Psi_e^{(k)}(R)\right|^2 q_{v,k}^2$$

Branching ratio: for allowed transitions:

$$S_i(W) \equiv 1$$

Experiment

T. Ohtsubo et al.,
PRL 95, 052501 (2005)

Calculation

$$\lambda_{\beta_b} / \lambda_{\beta_c}$$

0.171 ± 0.001

Experiment

0.188 ± 0.018
Isomer decays are altered: half-life measurement of bare 151mEr$^{68+}$

Decay rate for bare ions

$$\lambda_{\text{bare}} = \lambda_{\text{neutral}} \times \left(\sum_i \frac{b_{i,\beta^+ + e}}{(1 + \varepsilon/\beta^+) * s^i} + \sum_j \frac{b_{j,\text{IT}}}{1 + \alpha_{\text{tot}}^j} \right)$$

- b_r = branching ratio
- ε/β^+ = ratio of electron capture and β-decay
- s = screening = $F(Z,W)_{\text{neutral}} / F(Z,W)_{\text{bare}} \sim 1\%$

Calculated half-life: 15.3 ± 1.0 s

Measured half-life: 19 ± 3 s

Hindrance factor: 33 ± 5
Newly observed decay-properties in H-like iodine

- Orbital electron capture of highly-charged exotic ions
- Exhibits modulated exponential behaviour
- Explanation presently under discussion

Fit:
\[\frac{dN_{EC}}{dt} = N_0 \lambda_{EC} \exp(-\lambda t) \left[1 + a \cos(\omega t + \phi) \right] \]
Origin of ‘p-nuclei’ – abundant n-deficient isotopes, e.g. \(^{92,94}\text{Mo} \), \(^{96,98}\text{Ru} \)

Supernova shock passing through O-Ne layers of progenitor star

(p,γ) or (α,γ) rates in the Gamow window of the p-process in inverse kinematics

Pilot experiment performed with stable beams:
- direct proton capture of 96Ru in H gas target: 96Ru(p,γ)97Rh
- in-ring particle detectors for recoiling reaction products (low background, high efficiency)

R. Reifarth, M. Heil, P. Woods
to be published
Scattering of stored exotic nuclei off light hadronic probes

- Inverse kinematics
- Thin gas target (~10^{15}/cm2)
- Kinematic complete measurements
 - Elastic scattering (p,p) ...
 - Inelastic scattering (p,p'), (α,α') ...
 - Charge-exchange reactions (p,n), (3He,t), ($d,^2$He) ...
 - Quasi-free scattering (p,pn), ($p,2p$), ($p,p\alpha$) ...

→ Excitation energy and form factors from recoil ions with small energy/small momentum

Feasibility study (p,p) with 350 MeV/u 136Xe ions in ESR

Nuclear matter radius:
$R_m = 4.89 \pm 10$ fm

S. Ilieva et al.,
Summary and conclusion

Experimental data are needed for stellar nucleosynthesis

These data can be obtained (to some extent) in the laboratory.

Storage ring is a unique instrument, experiments provide data for highly-charged ions

Complementary approaches exist...
 - exotic nuclei at low and high energies
 - spectroscopy
 - reaction studies (stable and secondary beams \(\rightarrow\) FAIR)
...which yield
 - masses, half-lives, \(P_n\)-values, fission yields, cross sections, etc.
...needed to understand the state of affairs