Anomally Hindered E2 Strengths in $^{16,18}C$

RCNP, Osaka Univ.
H. J. Ong

In collaboration with
RIKEN
H. Sakurai, S. Takeuchi, N. Aoi, H. Baba, S. Bishop, M. Ishihara, T. Kubo, T. Motobayashi, Y. Yanagisawa
KEK
N. Imai
Tokyo U.
CNS, Tokyo U.
S. Ota
Rikkyo U.
Y. Togano, K. Kurita
Titech
Y. Kondo, T. Nakamura, T. Okumura

Question:

Ejectiles

Recoil Shadow Method

Upgraded Recoil Shadow Method

Experimental Setup @ RIPS (RIKEN)

Determination of mean lifetime

To determine the mean lifetime, we performed Monte Carlo simulations using the GEANT3 and
(1) to determine D(exp), and
(2) to generate response functions for use in fitting to deduce D(exp).

Procedures for simulations:

1. Beam info position, target, energy

 a. Scattered particle info scattered beam energy

2. Generation and detection of γ rays

 a. generated isotropically in CM frame

 b. Lorentz boost "detected" by NaI(Tl)

Results

Small $B(E2)$ values!! (See Fig.1)

- $B(E2)$ for ^{16}C
- $B(E2)$ for ^{18}C

Comparison with microscopic theoretical predictions:

- Shell Model predicts proton-closed shell in ^{16}C
- No-core Shell Model reproduces $B(E2)$ values for the neutron-rich $^{14,16}C$ quite well, when a small neutron effective charge $e_{n} = 0.16/z$ is assumed.

Both SM and AMD look promising in explaining the small $B(E2)$ values; but which picture is correct? More experimental data is necessary.

For the immediate future, it will be interesting to see whether the $B(E2)$ value for ^{18}C increases as predicted.

Figure 1

Lifetime measurement of the 2^+ state in ^{16}C

- Anomalously hindered E2 strength in ^{16}C

- Combined with the results from the inelastic proton scattering

Figure 2

- Neutron-dominant quadrupole collectivity in ^{16}C (see Fig. 2)

Figure 3

- Determination of mean lifetime

Figure 4

- Simulation

Figure 5

- Previous data

Besides ^{16}C, the mean lifetime $\tau(2^+)$ for ^{18}C was also remeasured with two reaction channels. Moreover, angular distribution of γ rays, which was not determined in the previous work (PRL 92, 062501(2004)), was also measured and incorporated into an improved reanalysis of the previous data. (See Fig.5)