Analyses of $(0.5\langle N_{part}\rangle)^{-1}dN_{ch}/d\eta$ distributions of PHOBOS and BRAHMS Collaborations by means of Ornstein-Uhlenbeck process

M. Biyajima^{*a*}, M. Ide^{*a*}, T. Mizoguchi^{*b*} and N. Suzuki^{*c*}

^a Department of Physics, Faculty of Science, Shinshu University, Matsumoto 390-8621, Japan

^b Toba National College of Maritime Technology, Toba 517-8501, Japan

^c Matsusho Gakuen Junior College, Matsumoto 390-1295, Japan

Recently interesting data on $dN_{\rm ch}/d\eta$ in Au-Au collisions $(\eta = -\ln \tan(\theta/2))$ with the centrality cuts have been reported by PHOBOS and BRAHMS Collaborations [1, 2]. Their data are usually divided by the number of participants (nucleons) in collisions. Instead of this way, using the total multiplicity $N_{\rm ch} = \int (dN_{\rm ch}/d\eta) d\eta$, we find that there are scaling phenomena among $(N_{\rm ch})^{-1} dN_{\rm ch}/d\eta = dn/d\eta$ with different centrality cuts at $\sqrt{s_{\rm NN}} = 130$ GeV and 200 GeV, respectively. To explain these scaling behaviors of $dn/d\eta$, we consider the stochastic approach named the Ornstein-Uhlenbeck process with two sources [3, 4]. The Langevin equation is adopted for the present explanation. Among $dn/d\eta$ at 130 GeV and 200 GeV, no significant difference has been found. The probability density $P(\eta, t) = dn/d\eta$ is expressed by

$$P(\eta, t) = \frac{1}{\sqrt{8\pi V^2(t)}} \left\{ \exp\left[-\frac{(\eta + \eta_{\max}e^{-\gamma t})^2}{2V^2(t)}\right] + \exp\left[-\frac{(\eta - \eta_{\max}e^{-\gamma t})^2}{2V^2(t)}\right] \right\} .$$

where $\eta_{\text{max}} = \ln \sqrt{s_{\text{NN}}}/m_{\text{N}}$, the variance $V^2(t) = (\sigma^2/\gamma)(1 - e^{-2\gamma t})$ and the factor $e^{-\gamma t}$ is the evolution parameters, respectively. The observed figures are reproduced by the above equation. Possible detection method of the quark-gluon plasma (QGP) through $dN_{\text{ch}}/d\eta$ is considered.

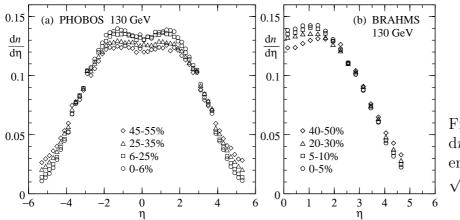


Figure 1: A set of $dn/d\eta$'s with different centrality cuts at $\sqrt{s_{\rm NN}} = 130$ GeV.

References

[1] B. B. Back et al. [PHOBOS Collaboration], Phys. Rev. Lett. 87 (2001) 102303.

[2] I. G. Bearden et al. [BRAHMS Collaborations], Phys. Lett. B 523, 227 (2001).

[3] M. Biyajima, M. Ide, T. Mizoguchi and N. Suzuki, arXiv:hep-ph/0110305.

[4] M. Biyajima, M. Ide, T. Mizoguchi and N. Suzuki, "Scaling behavior of $(N_{\rm ch})^{-1} dN_{\rm ch}/d\eta$ at $\sqrt{s_{\rm NN}} = 130$ GeV by PHOBOS Collaboration and its implication — A possible explanation by the Ornstein-Uhlenbeck process —." A preprint (2001, March)