Simultaneous Softening of σ and ρ Mesons associated with Chiral Restoration

K. Yokokawa^a, T. Hatsuda^a, A. Hayashigaki^a and T. Kunihiro^b

Complex poles of the unitarized π - π scattering amplitude in nuclear matter are studied [1]. Partial restoration of chiral symmetry is modeled by the decrease of in-medium pion decay constant f_{π}^* .

For large chiral restoration $(f_{\pi}^*/f_{\pi} \ll 1)$, 2nd sheet poles in the scalar (σ) and the vector (ρ) mesons are both dictated by the Lambert W function and show universal softening as f_{π}^* decreases. In-medium π - π cross section receives substantial contribution from the soft mode and exhibits a large enhancement in low-energy region. Fate of this universality for small chiral restoration $(f_{\pi}^*/f_{\pi} \sim 1)$ is discussed.

Implication of the results with the recent experimental observations on the medium modifications of ρ and σ is also discussed.

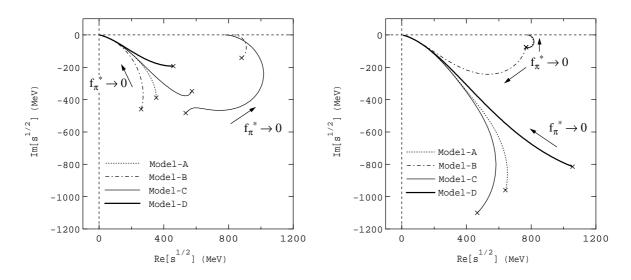


Figure 1: The shift of the pole position in the I=J=0 channel (left panel) and I=J=1 channel (right panel) associated with the decrease of f_{π}^* . Unitarization by the N/D method is applied for four chiral models (Model A: the ρ -model, Model B: the σ -model, Model C: the degenerate ρ - σ model [2], Model D: the leading order chiral perturbation). Two kinds of flows are found: one toward the origin (soft mode) and the other toward bare masses on the real axis. Crosses are the pole positions in the vacuum.

References

- [1] K. Yokokawa, T. Hatsuda, A. Hayashigaki and T. Kunihiro, hep-ph/0204163.
- [2] K. Igi and K. Hikasa, Phys. Rev. **D59**, 034005 (1999).

^a Department of Physics, University of Tokyo, Tokyo 113-0077, Japan

^b Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan