Nuclear \bar{K} bound states in proton-rich systems produced by (K^-, π^-) reaction via Λ^* doorways

Yoshinori Akaishi^a and Toshimitsu Yamazaki^b

Recently we predicted the possible existence of nuclear bound states of K in few-nucleon systems [1], where the strongly attractive K⁻p interaction plays an essential role.

We propose to use the (K^-, π^-) reaction to populate deeply bound \bar{K} states in proton-rich systems via $\Lambda(1405)$ and $\Lambda(1520)$ which serve as a "doorway" [2]. The advantage of this reaction is to produce very exotic \bar{K} bound systems on unbound nuclei, such as K^-pp , K^-ppp and K^-pppn . The K^-pp system is the lightest one, which can be called a *strange dibaryon*. The presence of a \bar{K} attracts two protons to form a bound state with B=48 MeV and $\Gamma=61$ MeV, the structure of which is shown in Fig. 1.

"Bound-K nuclear spectroscopy" will provide a new paradigm in strangeness nuclear physics. When a K⁻ is injected into nuclear medium, high-density matter would be formed as a result of "contraction" due to the strong K⁻p attraction. Of particular interest is whether or not the K⁻ and surrounding nucleons keep their identities. It is vitally important to experimentally examine the simplest case of K⁻pp, which is a gateway toward more exotic heavier strange systems.

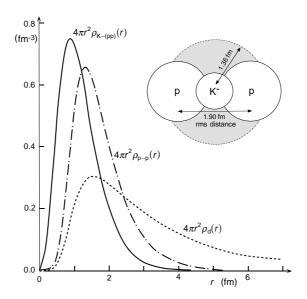


Figure 1: The K⁻ and proton density distributions in the K⁻pp system.

References

- [1] Y. Akaishi and T. Yamazaki, Phys. Rev. C 65 (2002) 044005.
- [2] T. Yamazaki, Nucl. Phys. **A691** (2001) 515c.
 - T. Yamazaki and Y. Akaishi, Phys. Lett. **B** (2002)

^a Institute of Particle and Nuclear Studies, KEK, Tsukuba 305-0801, Japan

^b RI Beam Science Laboratory, RIKEN, Wako 351-0198, Japan