Possibility of $\Lambda \Lambda$ Pairing in $N \Lambda$ Matter

Tomonori Tanigawa ${ }^{a, b}$, Masayuki Matsuzaki ${ }^{c}$, and Satoshi Chiba ${ }^{b}$
${ }^{a}$ Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo 102-8471, Japan
${ }^{b}$ Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195, Japan
${ }^{c}$ Fukuoka University of Education, Munakata, Fukuoka 811-4192, Japan

The NAGARA event [1] imposes a strong constraint upon the $\Lambda \Lambda$ interaction. This laboratory result consequently gives an impact on the properties of neutron stars. In neutron star matter, it is believed that hyperons appear at densities of a few ρ_{0}, where ρ_{0} being the saturation density; if they become superfluid, it is expected that their cooling would be significantly affected.
Two groups have studied the $\Lambda \Lambda$ pairing in dense nuclear matter up to now and reported sizable pairing gaps based on rather strongly attractive $\Lambda \Lambda$ interactions $[2,3]$. But the latest experimental information mentioned above indicates weaker ones. Thus we study the $\Lambda \Lambda$ pairing problem adopting a relativistic interaction, mediated by $\sigma, \omega, \sigma^{*}$, and ϕ, that approximately reproduces the measured bond energy $\Delta B_{\Lambda \Lambda}$ in ${ }_{\Lambda \Lambda}^{6} \mathrm{He}$. Here, in order to concentrate on the $\Lambda \Lambda$ pairing, we choose symmetric nuclear matter, in which the $\Lambda-\Sigma^{0}$ mixing does not occur, as the background as in Ref. [2].
The main result is presented in Fig. 1. This figure shows

- $\Delta<0.5 \mathrm{MeV}$ at physical densities.

Figure 1: $\Lambda \Lambda$ pairing gap at the Fermi surface of Λ for various background densities.

- The density dependence is opposite to that in Ref. [2].

The first conclusion is due to weakness of the attraction. The second one is brought about by the density dependence of the Dirac effective mass of Λ immersed in the dense background.

References

[1] H. Takahashi et al., Phys. Rev. Lett. 87 (2001) 212502.
[2] S. Balberg and N. Barnea, Phys. Rev. C 57 (1998) 409.
[3] T. Takatsuka and R. Tamagaki, Prog. Theor. Phys. 102 (1999) 1043.

