Measurement of the alignment correlation terms of the spin aligned ${ }^{8} \mathbf{B}$ and ${ }^{8} \mathrm{Li}$ for the detection of G-parity irregular term

T. Sumikama, K. Minamisono, T. Nagatomo, M. Ogura, T. Iwakoshi, M. Mihara, M. Fukuda, K. Matsuta and T. Minamisono
Department of Physics, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan

In the parity violating weak nucleon current, the G parity, which is the parity in the charge space, is another important symmetry to be tested. The G-parity may be broken because of the mass difference between mirror pairs or more fundamentally between up and down quarks. Recently, in the mass $\mathrm{A}=12$ system, G-parity irregular term was determined precisely by measuring the alignment correlation terms in the β-ray angular distributions of the purely spin aligned mirror pair ${ }^{12} \mathrm{~B}$ and ${ }^{12} \mathrm{~N}$ and was vanishingly small[2].
To set reliable discussion on G-parity irregular term, it is necessary to detect the term precisely in another mass system such as $A=8$. This term has been detected in the $\alpha-\beta$ angular correlation experiments[1] for the $\mathrm{A}=8$ system. We have been detecting β-ray angular distributions of the purely spin aligned mirror pair ${ }^{8} \mathrm{~B}$ and ${ }^{8} \mathrm{Li}$.
The spin polarization is produced in the nuclear reaction process. Applying the NMR technique, the polarization is converted into positive and negative alignments with ideally no residual polarization. Fig. 1 is the result of this spin manipulations for ${ }^{8} \mathrm{~B}$. As shown in Fig. 1, the sufficiently large alignment was produced.
Now we have been accumulating data of the alignment correlation term for ${ }^{8} \mathrm{~B}$. We will report the re-

Fig. 1 Result of the spin manipulations. sult, together with that for ${ }^{8} \mathrm{Li}$.

References

[1] R. E. Tribble and G. T. Garvey, Phys. Rev. C 12, 967 (1975); R. D. McKeown, G. T. Garvey and C. A. Gagliardi, Phys. Rev. C 22, 738 (1980).
[2] K. Minamisono, K. Matsuta, T. Minamisono, T. Yamaguchi, T. Sumikama, T. Nagatomo, M. Ogura, T. Iwakoshi, M. Fukuda, M. Mihara, Phys. Rev. C 65, 015501 (2002)

