Reaction Mechanism of ${ }^{12} \mathbf{C}\left(\mathbf{e}, e^{\prime} \mathbf{p}\right)$ Reaction at Low Momentum Transfer

T. Tamae ${ }^{a}$, Y. Sato ${ }^{a}$, T. Yokokawa ${ }^{a}$, Y. Asano ${ }^{a}$, M. Kawabata a, O. Konno c, I. Nakagawa ${ }^{d}$, I. Nishikawa ${ }^{a}$, K. Hirota a, H. Yamazaki ${ }^{a}$, R. Kimura ${ }^{b}$, H. Miyase ${ }^{b}$, H. Tsubota ${ }^{b}$
${ }^{a}$ Laboratory of Nuclear Science, Mikamine, Taihaku, Sendai 982-0826, Japan
${ }^{b}$ Graduate School of Science, Tohoku University, Aramaki, Aoba, Sendai 980-8578, Japan
${ }^{c}$ Ichinoseki National College of Technology, Hagiso, Ichinoseki 021-8511, Japan
${ }^{d}$ Laboratory of Nuclear Science, MIT, Cambridge, MA 02139, USA

!!!! The reaction mechanism of the (γ, p) reaction still remains a subject of discussion. There exists a significant discrepancy between the calculated cross sections obtained in non-relativistic and relativistic approaches. In order to study the problem, we measured the ($\mathrm{e}, \mathrm{e}^{\prime} \mathrm{p}_{0}$) cross section of ${ }^{12} \mathrm{C}$ in a kinematical condition close to the (γ, p) reaction: an energy transfer of 60 MeV and a momentum transfer of $104.1 \mathrm{MeV} / \mathrm{c}$. The reduced cross section at missing momenta between 181.3 and $321.2 \mathrm{MeV} / \mathrm{c}$ obtained from the experiment is compared with a distorted wave impulse approximation (DWIA) in reasonable agreement (Fig. 1). This result demonstrates a high reliability of the DWIA calculation in this energy region, and supports the discussion that a large difference between the experimental data and the DWIA calculation in the $\left(\gamma, \mathrm{p}_{0}\right)$ reaction is related to nonnucleonic degrees-of-freedom such as meson exchange currents. The present result should be compared also with relativistic calculations.

Figure 1: Reduced cross section of ${ }^{12} \mathrm{C}\left(\mathrm{e}, \mathrm{e}^{\prime} \mathrm{p}_{0}\right)$ and $\left(\gamma, \mathrm{p}_{0}\right)$ reactions. Closed triangles represent the data of the quasi-elastic (e , e' p_{0}) reaction. Closed circles are data from (γ, p_{0}) reaction. Open squares show the results of the present ($e, e^{\prime} p_{0}$) experiment, and lines are results of the DWIA calculation corresponding to the present kinematics.

