Reaction Mechanism of ${}^{12}C(e, e'p)$ Reaction at Low Momentum Transfer

T. Tamae^{*a*}, Y. Sato^{*a*}, T. Yokokawa^{*a*}, Y. Asano^{*a*}, M. Kawabata^{*a*}, O. Konno^{*c*}, I. Nakagawa^{*d*}, I. Nishikawa^{*a*}, K. Hirota^{*a*}, H. Yamazaki^{*a*}, R. Kimura^{*b*}, H. Miyase^{*b*}, H. Tsubota^{*b*}

^a Laboratory of Nuclear Science, Mikamine, Taihaku, Sendai 982-0826, Japan

^b Graduate School of Science, Tohoku University, Aramaki, Aoba, Sendai 980-8578, Japan

^c Ichinoseki National College of Technology, Hagiso, Ichinoseki 021-8511, Japan

^d Laboratory of Nuclear Science, MIT, Cambridge, MA 02139, USA

1 !!! The reaction mechanism of the (γ, p) reaction still remains a subject of discussion. There exists a significant discrepancy between the calculated cross sections obtained in non-relativistic and relativistic approaches. In order to study the problem, we measured the (e, e'p₀) cross section of ¹²C in a kinematical condition close to the (γ, p) reaction: an energy transfer of 60 MeV and a momentum transfer of 104.1 MeV/c. The reduced cross section at missing momenta between 181.3 and 321.2 MeV/c obtained from the experiment is compared with a distorted wave impulse approximation (DWIA) in reasonable agreement (Fig. 1). This result demonstrates a high reliability of the DWIA calculation in this energy region, and supports the discussion that a large difference between the experimental data and the DWIA calculation in the (γ, p_0) reaction is related to nonnucleonic degrees-of-freedom such as meson exchange currents. The present result should be compared also with relativistic calculations.

Figure 1: Reduced cross section of ${}^{12}C(e, e'p_0)$ and (γ, p_0) reactions. Closed triangles represent the data of the quasi-elastic (e, e'p_0) reaction. Closed circles are data from (γ, p_0) reaction. Open squares show the results of the present (e, e'p_0) experiment, and lines are results of the DWIA calculation corresponding to the present kinematics.