Hadron-Nucleus Bound-State Spectroscopy

Toshimitsu Yamazaki

RI Beam Science Laboratory, RIKEN, Wako, Saitama-ken, 351-0198 Japan

Deeply Bound π^- States as an Indicator of Chiral Symmetry Restoration

A new type of nuclear spectroscopy to produce deeply bound 1s states of π^- in heavy nuclei has been developed since the first success at GSI [1,2] based on theoretical predictions [3]. They provide a unique information on the isovector s-wave π N interaction in the nuclear medium, which is connected to the question of chiral symmetry restoration [4,5]. A detailed analysis of the new data in ²⁰⁵Pb has indicated an enhancement of the isovector parameter, b_1/b_1^{free} , or equivalently, a decreased chiral order parameter, $R = (f_{\pi}^*/f_{\pi}^{\text{free}})^2 = 0.78_{-0.09}^{+0.13}$ [6]. A further high-precision experiment on series of Sn isotopes provides a more decisive indication [7].

K Bound States as Cold and Dense Nuclear Systems

In the strange meson sector a new paradigm is being pursued, as narrow nuclear \bar{K} bound states in few-body systems are predicted to exist [8]. Very deeply bound states lying below the $\Sigma\pi$ emission threshold are accommodated by the strong attraction of the I=0 $\bar{K}N$ interaction. The most spectacular aspect is that they are expected to form enormously dense nuclear systems. The exotic structure involving a \bar{K} has also been studied by the Antisymmetrized Molecular Dynamics method [9]. Currently, an experiment on ⁴He (stopped K^- , n) to search for K^- ppn is under way at KEK [10]. A new possibility using (K^-,π^-) to populate exotic systems such as K^- pp, K^- ppp, etc. has also been pointed out [11], and its first experimental trial is proposed [12].

References

- T. Yamazaki et al., Z. Phys. A355 (1996) 219; Phys. Lett. B418 (1998) 246; H. Gilg et al., Phys. Rev. C62 (2000) 025201; K. Itahashi et al., Phys. Rev. C62 (2000) 025202.
- [2] H. Geissel et al., Phys. Rev. Lett. 88 (2002) 122301.
- [3] H. Toki and T. Yamazaki, Phys. Lett. **B213** (1988) 129; H. Toki, S. Hirenzaki, R.S. Hayano and T. Yamazaki, Nucl. Phys. **A501** (1989) 653.
- [4] W. Weise, Acta Physica Polonica **31** (2000) 2715.
- [5] P. Kienle and T. Yamazaki, Phys. Lett. **B514** (2001) 1.
- [6] H. Geissel et al., Phys. Lett. B, submitted.
- [7] M. Fujita et al., this conference
- [8] Y. Akaishi and T. Yamazaki, Phys. Rev. C65 (2002) 044005.
- [9] A. Doté et al., RIKEN-AF-NP-425 (2002), submitted.
- [10] M. Iwasaki *et al.*, Nucl. Inst. Methods **A473** (2001) 286.
- [11] T. Yamazaki and Y. Akaishi, Phys. Lett. **B535** (2002) 70.
- [12] T. Nagae *et al.*, AGS Proposal (2002).