1. Search for Electric Dipole Moment of Atom at RCNP

2. Nuclear Physics with Neutrino Beam at J-PARC

Yasuhiro Sakemi RCNP

Search for permanent EDM

Time Reversal Symmetry ~ Violation ? ~ Test !

CPT ~ invariant in quantum field theory : No evidence of violation
✓ T: Time Reversal ~ No evidence of violation
✓ CP: violation was found ~ K⁰, B decay
✓ CPT theorem + CP violation T violation ?

Window to look at Beyond the Standard Model

Enhancement effect for Atomic EDM

Experimental Overview

Ring Cyclotron

EDM Measurement and Sensitivity

- K: Enhancement factor~ Atom EDME : Electric Field~ Strong, 100 kV/cmN : Number of Particles~ Many particles !: Coherence Time (Stored time)~ Long !T : Lifetime of Experimentalist~ Long !
- = Largest ~ Francium
- = Laser trap in high vacuum
- = Ion Source + Ion guide
 - = Laser trap

EDM measurement

 $\delta d = \frac{h}{2e} \cdot \frac{1}{K} \cdot \frac{1}{E} \cdot \frac{1}{\sqrt{N \cdot \tau \cdot T}} \sim 10^{-28}$ $\checkmark \text{ Enhancement factor : K=1150 for Fr}$ $\checkmark E \sim 100 \text{ kV/cm}$ $\checkmark \text{ Coherence time : ~ 1 s}$ $\checkmark \text{ N} \sim 6000 \text{ atoms @ 1 uA } ^{18}\text{O beam}$ Measurement time : T ~ 60 days needed $\succ \text{ If we have 10 days beam time / year } \text{ 6years}$ $\succ \text{ If we have 10 } \mu \text{ A } \dots$

- □ Collection efficiency : trapping/cooling technique
- □ ECR ion source ~ High intensity
- □ Radiation protection
- O Low cost ~ AVF cyclotron only , RING cyclotron NOT used..
- Not so much effect to beam time
 - ~ no effect to main physics program at RCNP (high resolution, spin-isospin, cluster...)

Francium Atomic Level Scheme

Present status

Institute	Project	Elements	Trap	Status	Goal
SUNY		²¹⁰ Fr	МОТ	Atomic structure	
KVI	TRIuP	Ra (p)	MOT/Penning	First beam	
TRIUMF	TISOL		МОТ		
California / LBL		²⁰⁵ Tl (e)	Atomic beam	Best limit	
Kyoto		¹⁷¹ Yb (p)	МОТ		
T.I.T.		Xe (p)			
RCNP		²⁰⁷⁻²¹¹ Fr	MOT+Laser Trap	No plan	

EDM	Elements							
Electron	Rb	Cs	Fe ³⁺	129 Xe 3 P ₂	²⁰⁵ Tl	Fr	Others	
Nucleus	¹²⁹ Xe ¹ S ₀	Rn	¹⁹⁹ Hg	Ra	Yb	Dy,Sm,Ba	Others	

AVF Cyclotron Upgrade Project at RCNP

Diagnosis Beam Line

New Technique = Radioactive Atom Production with Accelerator + Laser Trap using New machines constructed in AVF Upgraded Project in 2004/2005

Cost, Manpower, Timeline

Cost:

(Beam Line, Vacuum System, Surface Ionizer, Ion Guide, Laser Trap, Detector) ~ Total:1~1.5 億円程度

Plan:

•Francium Production :

- ~ Feasibility Test Experiment : proposed at next B-PAC (Feb-21)
- •Laser Trap : Design work in progress
- ~ Collaboration with Quantum Optics Group at Kyoto Univ.

When feasibility check is completed , Propose to Experimental Project at B/P-PAC

µ ⁻ ~5*10³/s µ ⁻ ~5*10⁸/s

Nuclear Physics with Neutrino Beam

New Beam ~ Neutrino at J-PARC : E ~1 GeV

- Spin structure of nucleon
 : Hadron physics

 ~ Strange quark spin content
 S
- **Spin response function** : Nuclear physics
 - **, propagation in the interior of the nucleus**

Spin structure of the nucleon

Naive Parton Model :

 $\Delta u_V + \Delta d_V = 1$

But 1988 EMC measured : =0.123 ± 0.013 ± 0.019 Spin Puzzle From Inclusive Data : ✓ Valence quark ~ well known ✓ Sea quarks ? From Unpolarized Data :

✓ Light sea quark flavor asymmetry✓ Gluons are important

Full description of Jq & Jg Orbital angular momentum

 $\frac{\frac{1}{2}(\Delta u_v + \Delta d_v + \Delta q_s) + \Delta G + L_q + L_g}{= \Delta u_s + \Delta \overline{u} + \Delta d_s + \Delta \overline{d} + \Delta \overline{s} + \Delta \overline{s}}$

Spin Content of Strange Quark

Quark Polarization from semi-inclusive measurement at HERMES

consistent with 0, although negative from inclusive data

How to measure: **S** from Neutrino-Proton elastic scattering

$$\frac{d\sigma}{dQ^2} = \frac{G_F^2}{2\pi} \frac{E_v^2}{Q^2} \left[A \pm BW + CW^2 \right], + \text{for } v,$$

$$W = 4(E_v / M_p - \tau), \quad \tau = Q^2 / 4M_p^2 - \text{for } \overline{v}$$

$$\begin{aligned} \mathbf{A} &= \frac{1}{4} \Big[\mathbf{G}_{1}^{2} (1 + \tau) - \Big(\mathbf{F}_{1}^{2} - \tau \mathbf{F}_{2}^{2} \Big) (1 - \tau) + 4 \tau \mathbf{F}_{1} \mathbf{F}_{2} \Big], \\ \mathbf{B} &= -\frac{1}{4} \Big[\mathbf{G}_{1} \left(\mathbf{F}_{1} + \tau \mathbf{F}_{2} \right) \Big], \qquad \mathbf{G}_{1} (\mathbf{Q}^{2}) = \frac{-0.631}{(1 + \mathbf{Q}^{2} / \mathbf{M}_{\mathbf{A}}^{2})^{2}} + \frac{\mathbf{G}_{1}^{s} (\mathbf{Q}^{2})}{2} \\ \mathbf{C} &= \frac{1}{16} \frac{\mathbf{M}_{\mathbf{p}}^{2}}{\mathbf{Q}^{2}} \Big[\mathbf{G}_{1}^{2} + \mathbf{F}_{1}^{2} + \tau \mathbf{F}_{2}^{2} \Big], \qquad \mathbf{G}_{1}^{s} (\mathbf{Q}^{2} = 0) = \Delta \mathbf{S} \end{aligned}$$

Axial form factor

Sensitivity for Δs and Other Physics Impact

Conditions:

- Similar Detection Efficiency to E734:
 - 7.6% for neutrino-N elastic
 - 5.4% for anti-neutrino-N elastic
- with lower Q^2 cut-off : 0.1 GeV²
 - Achievable with more uniform detector
- 25 times more statistics but pure proton only 1/6
 - Factor 2 reduction in statistical error
- Systematic control improvements to ~5%
 - E734, 7.6% dominated by Beam Flux and Nuclear Effects
 - Possible to remove Nuclear Effects which could be larger in lower Q² region

Neutron EDM ~ predicted using q-EDM and Dq

$$d_n = \eta^E (\Delta u d_u^E + \Delta d d_d^E + \Delta s d_s^E)$$

$$\propto m_u \Delta u + m_d \Delta d + m_s \Delta s$$

Coherent Pion Production

peripheral reaction ~ nuclear surface

Effect to nuclear matter property

Short range correlation : g'

- ~ sensitive to critical density of pion condensation phase
- ~ determine the limit of from the CPP measurement

CPP experiment at RCNP

Neutrino induced CPP

ν interaction type	ν _μ 10 ²⁰ POT	$\frac{\overline{\nu_{\mu}}}{10^{20} \text{ POT}}$	$\nu_e + \overline{\nu_e}$ 10^{20} POT 1 top
	1 ton	1 ton	1 ton
CC QE, $\nu_{\mu}n \rightarrow \mu^{-}p$	11,395	184	56
NC EL, $\nu_{\mu} N \rightarrow \nu_{\mu} N$	4,993	86	22
CC π^+ , $\nu_{\mu} p \rightarrow \mu^- p \pi^+$	3,293	24	24
CC π^0 , $\nu_\mu n \rightarrow \mu^- p \pi^0$	725	11	6
CC π^+ , $\nu_{\mu} n \rightarrow \mu^- n \pi^+$	646	10	6
NC π^0 , $\nu_\mu p \rightarrow \nu_\mu p \pi^0$	606	10	5
NC π^+ , $\nu_\mu p \rightarrow \nu_\mu n \pi^+$	370	6	3
NC π^0 , $\nu_\mu n \rightarrow \nu_\mu n \pi^0$	454	8	3
NC π^- , $\nu_\mu n \rightarrow \nu_\mu p \pi^-$	290	5	2
CC DIS, $\nu_{\mu} N \rightarrow \mu^{-} X$	176	0	1
NC DIS, $\nu_{\mu} N \rightarrow \nu_{\mu} X$	64	0	0
CC coh π^+ , $\nu_{\mu} A \rightarrow \mu^- A \pi^+$	539	22	3
NC coh π^0 , $\nu_\mu A \rightarrow \nu_\mu A \pi^0$	349	14	2
other	464	14	1
total	24,364	394	134

Cost and Timeline

•Impossible to locate the detector in the near detector hall

- •New detector hall underground or
- •Simulation study in progress to optimize the detector..
- Cost ~ depend on the detector location ~ 穴掘り工事:10億円~30億円?
- ✓ NeuFact04
 ✓ NP04
 ✓ Workshop at RCNP ~ Feb.-24/2005
 Start to prepare Letter of Intent
 Try to get budget.....

Working group : Kyoto, Tokyo Tech., KEK, RCNP,.....

Summary

EDM search of Electron

- •Time reversal symmetry violation, Beyond the standard model
- •Open new research area with high precision measurement at RCNP
- •Based on upgraded ECR ion source, AVF cyclotron, Beam line
- •Accelerator Complex

Nuclear physics with Neutrino Beam

•New probe ~ Neutrino at J-PARC

- ✓ Strange quark ~ Spin structure of nucleon
- ✓ Interior of nucleus ~ Spin response function
- •Natural extension of Spin-Isospin Physics at RCNP
- •Nuclear physics facility (base) with Lepton-Photon beam
 - ✓ LEPS@SPring-8 + Neutrino + High energy electron beam from LC