# **Coherent Pion Production induced by neutrino and hadron beam**

#### Yasuhiro SAKEMI Research Center for Nuclear Physics (RCNP) Osaka University

#### Contents

- Physics motivation
- Coherent Pion Production
- Proton induced CPP at RCNP
- Neutrino beam at J-PARC
- Summary

 $\Delta\Delta$  interaction in the nuclear medium ~ short range correlation of  $\Delta$ -hole: g' $_{\Delta\Delta}$ 



## **Coherent Pion Production**





## Longitudinal Response

◆ Longitudinal Response ~ Enhancement and Softening

 $R_L \propto |\langle n | \sigma \cdot \mathbf{q} | \mathbf{0} \rangle|^2$ 

**Representing**  $\pi NN$  and  $\pi N\Delta$  couplings

 $R_T \propto |\langle n | \sigma \times \mathbf{q} | \mathbf{0} \rangle|^2$ 





#### **Effective Interaction**

 $\pi + \rho + g' \mod del$ 

$$V_{eff}(q,\omega) = V_{LM} + V_{\pi}(q,\omega) + V_{\rho}(q,\omega)$$

Landau-Migdal parameters ~ short range correlation

$$\begin{split} V_{LM} &= \frac{f_{\pi NN}^{2}}{m_{\pi}^{2}} \left\{ g'_{NN} (\sigma_{1} \cdot \sigma_{2}) (\tau_{1} \cdot \tau_{2}) \right. \\ &+ \frac{f_{\pi N\Delta}}{f_{\pi NN}} g'_{N\Delta} \left[ ((\tau_{1} \cdot T_{2}) (\sigma_{1} \cdot S_{2}) + (\tau_{1} \cdot T_{2}) (\sigma_{1} \cdot S_{2})) + h.c. \right] \\ &+ \left( \frac{f_{\pi \Delta \Delta}}{f_{\pi NN}} \right)^{2} g'_{\Delta \Delta} \left[ ((T_{1} \cdot T_{2}) (S_{1} \cdot S_{2}) + (T_{1} \cdot T_{2}) (S_{1} \cdot S_{2})) + h.c. \right] \right\} \delta(r_{1} - r_{2}) \end{split}$$



# $g'_{NN}$ and $g'_{N\Delta}$



## $\mathbf{g'}_{\Delta\Delta}$ and pion condensation

 $\mathbf{g'}_{\Delta\Delta} \sim \text{Sensitive to}$  $g'_{\Lambda\Lambda} \sim No$  experimental information  $\pi^0$ condensation (Z=0,  $g'_{NN}=0.6$ ) calculations by ۵ CORE: 4 Tatsumi et al. Homogeneou Matter 3 9'NA 0.6  $\rho_{\rm c} / \rho_{\rm 0}$ 0.2 2 1 univ. 0 0.0 0.2 0.6 0.8 1.0 0.4  $g'_{\Delta\Delta}$ 

 $\rightarrow$  Critical density of pion condensation ➢Cooling mechanism of neutron star  $\Delta$  propagation in the high density matter





## Spin longitudinal response

p

160

180

140



**0 degree measurement** 

 $g'_{\Delta\Delta}$  extraction from CPP



#### **CPP** experiments

**Hadron probe** 

 •Saclay (<sup>3</sup>He,t <sup>+</sup>)
 ~ resolution : not enough to separate ground state

 •LAMPF (p,n <sup>+</sup>)
 ~ test experiment : shutdown

 •RCNP (p,n <sup>+</sup>) (<sup>3</sup>He,t <sup>+</sup>)
 ~ in progress

 study residual interaction with high resolution measurement





# Experimental setup

Charged particle detector in the sweeping magnet



**Neutron Counter** 



Position sensitive Neutron Counter (liq Sci.) TOF length ~ 70 m Energy resolution : 300 keV Detection efficiency : 15 % @150~400 MeV



# **Tracking Detector**

- 1. Gas Electron Multiplier detector (GEM)
- 2. Charged particle  $(\pi..)$  detection in the magnet
- 3. Detector components
  - Three layers of GEM foil ~ high gain
  - 2dimentional Readout board ~ high resolution
- 4. Specification
  - ▹ high position resolution~ 100mm
  - Effective area~ 300x50 mm
  - radiation tolerance
- 5. Readout ~ high speed with parallel processing : SpaceWire
- 6. Installation ~ completed in the spring of 2006.



gain as a function of biased voltage to GEM







## Test Experiment





## Neutrino Beam



- •Weak interaction
- •Can prove the interior of nucleus
- •Cross section ~ behave volume like
- •No distortion/absorption
- •Adler's theorem : M~T( (q)+N X)

#### Neutrino

Good Probe to study the interior of the nucleus keep the information of nuclear interior



- •Strong interaction
- •Reaction ~ peripheral
- •Sensitive to nuclear surface
- •Distortion/Absorption effects can investigate residual interaction and response function with high accuracy



## Neutrino induced CPP



Peak g'<sub>ΔΔ</sub>
Strength response function

#### Search for coherent charged pion production in neutrino-carbon interactions

M. Hasegawa,<sup>12</sup> E. Aliu,<sup>1</sup> S. Andringa,<sup>1</sup> S. Aoki,<sup>10</sup> J. Argyriades,<sup>3</sup> K. Asakura,<sup>10</sup> R. Ashie,<sup>30</sup> H. Berns,<sup>33</sup> H. Bhang,<sup>20</sup> A. Blondel,<sup>26</sup> S. Borghi,<sup>26</sup> J. Bouchez,<sup>3</sup> J. Burguet-Castell,<sup>32</sup> D. Casper,<sup>28</sup> C. Cavata,<sup>3</sup> A. Cervera,<sup>26</sup> S. M. Chen,<sup>25</sup> K. O. Cho,<sup>4</sup> J. H. Choi,<sup>4</sup> U. Dore,<sup>19</sup> X. Espinal,<sup>1</sup> M. Fechner,<sup>3</sup> E. Fernandez,<sup>1</sup> Y. Fukuda,<sup>15</sup> J. Gomez-Cadenas,<sup>32</sup> R. Gran,<sup>33</sup> T. Hara,<sup>10</sup> T. Hasegawa,<sup>22</sup> K. Havashi,<sup>12</sup> Y. Havato,<sup>7</sup> R. L. Helmer,<sup>25</sup> J. Hill,<sup>23</sup> K. Hiraide,<sup>12</sup> J. Hosaka,<sup>30</sup> A. K. Ichikawa,<sup>7</sup> M. Iinuma,<sup>8</sup> A. Ikeda,<sup>17</sup> T. Inagaki,<sup>12</sup> T. Ishida,<sup>7</sup> K. Ishihara,<sup>30</sup> T. Ishii,<sup>7</sup> M. Ishitsuka,<sup>31</sup> Y. Itow,<sup>30</sup> T. Iwashita,<sup>7</sup> H. I. Jang,<sup>4</sup> E. J. Jeon,<sup>20</sup> I. S. Jeong,<sup>4</sup> K. Joo,<sup>20</sup> G. Jover,<sup>1</sup> C. K. Jung,<sup>23</sup> T. Kajita,<sup>31</sup> J. Kameda,<sup>30</sup> K. Kaneyuki,<sup>31</sup> I. Kato,<sup>25</sup> E. Kearns,<sup>2</sup> D. Kerr,<sup>23</sup> C. O. Kim,<sup>11</sup> M. Khabibullin,<sup>9</sup> A. Khotjantsev,<sup>9</sup> D. Kielczewska,<sup>34,21</sup> J. Y. Kim,<sup>4</sup> S. Kim,<sup>20</sup> P. Kitching,<sup>25</sup> K. Kobayashi,<sup>23</sup> T. Kobayashi,<sup>7</sup> A. Konaka,<sup>25</sup> Y. Koshio,<sup>30</sup> W. Kropp,<sup>28</sup> J. Kubota,<sup>12</sup> Yu. Kudenko,<sup>9</sup> Y. Kuno,<sup>18</sup> T. Kutter,<sup>13,27</sup> J. Learned,<sup>29</sup> S. Likhoded,<sup>2</sup> I. T. Lim,<sup>4</sup> P. F. Loverre,<sup>19</sup> L. Ludovici,<sup>19</sup> H. Maesaka,<sup>12</sup> J. Mallet,<sup>3</sup> C. Mariani,<sup>19</sup> T. Maruyama,<sup>7</sup> S. Matsuno,<sup>29</sup> V. Matveev,<sup>9</sup> C. Mauger,<sup>23</sup> K. McConnel,<sup>14</sup> C. McGrew,<sup>23</sup> S. Mikheyev,<sup>9</sup> A. Minamino,<sup>30</sup> S. Mine,<sup>28</sup> O. Mineev,<sup>9</sup> C. Mitsuda,<sup>30</sup> M. Miura,<sup>30</sup> Y. Moriguchi,<sup>10</sup> T. Morita,<sup>12</sup> S. Morivama,<sup>30</sup> T. Nakadaira,<sup>12,7</sup> M. Nakahata,<sup>30</sup> K. Nakamura,<sup>7</sup> I. Nakano,<sup>17</sup> T. Nakaya,<sup>12</sup> S. Nakayama,<sup>31</sup> T. Namba,<sup>30</sup> R. Nambu,<sup>30</sup> S. Nawang,<sup>8</sup> K. Nishikawa,<sup>12</sup> K. Nitta,<sup>7</sup> F. Nova,<sup>1</sup> P. Novella,<sup>32</sup> Y. Obavashi,<sup>30</sup> A. Okada,<sup>31</sup> K. Okumura,<sup>31</sup> S. M. Oser,<sup>27</sup> Y. Ovama,<sup>7</sup> M. Y. Pac,<sup>5</sup> F. Pierre,<sup>3</sup> A. Rodriguez,<sup>1</sup> C. Saji,<sup>31</sup> M. Sakuda,<sup>7,17</sup> F. Sanchez,<sup>1</sup> A. Sarrat,<sup>23</sup> T. Sasaki,<sup>12</sup> H. Sato,<sup>12</sup> K. Scholberg,<sup>6,14</sup> R. Schroeter,<sup>26</sup> M. Sekiguchi,<sup>10</sup> E. Sharkey,<sup>23</sup> M. Shiozawa,<sup>30</sup> K. Shiraishi,<sup>33</sup> G. Sitjes,<sup>32</sup> M. Smy,<sup>28</sup> H. Sobel,<sup>28</sup> J. Stone,<sup>2</sup> L. Sulak,<sup>2</sup> A. Suzuki,<sup>10</sup> Y. Suzuki,<sup>30</sup> T. Takahashi,<sup>8</sup> Y. Takenaga,<sup>31</sup> Y. Takeuchi,<sup>30</sup> K. Taki,<sup>30</sup> Y. Takubo,<sup>18</sup> N. Tamura,<sup>16</sup> M. Tanaka,<sup>7</sup> R. Terri,<sup>23</sup> S. T'Jampens,<sup>3</sup> A. Tornero-Lopez,<sup>32</sup> Y. Totsuka,<sup>7</sup> S. Ueda,<sup>12</sup> M. Vagins,<sup>28</sup> L. Whitehead,<sup>23</sup> C.W. Walter,<sup>6</sup> W. Wang,<sup>2</sup> R.J. Wilkes,<sup>33</sup> S. Yamada,<sup>30</sup> S. Yamamoto,<sup>12</sup> C. Yanagisawa,<sup>23</sup> N. Yershov,<sup>9</sup> H. Yokoyama,<sup>24</sup> M. Yokoyama,<sup>12</sup> J. Yoo,<sup>20</sup> M. Yoshida,<sup>18</sup> and J. Zalipska<sup>21</sup>

(The K2K Collaboration)

(Dated: June 4, 2005)

We report the result from a search for charged-current coherent pion production induced by muon neutrinos with a mean energy of 1.3 GeV. The data are collected with a fully active scintillator detector in the K2K long-baseline neutrino oscillation experiment. No evidence for coherent pion production is observed and an upper limit of  $0.60 \times 10^{-2}$  is set on the cross section ratio of coherent pion production to the total charged-current interaction at 90% confidence level. This is the first experimental limit for coherent charged pion production in the energy region of a few GeV.

PACS numbers: 13.15.+g,25.30.Pt,95.55.Vj

 $\mathbf{2}$ 

#### Neutrino induced CPP

**Coherent Pion Production data ~ not so much data** First data from K2K ~ GeV energy region NO evidence of CPP



## Neutrino Beam at J-PARC

![](_page_23_Figure_1.jpeg)

#### Neutrino induced CPP

# **E~1 GeV** $\Delta$ resonance region ~ $\Delta\Delta$ interaction in the nuclear medium ~ $\pi,\Delta$ propagation in the interior of nucleus

#### LOI (AGS neutrino beam)

![](_page_24_Figure_3.jpeg)

Table 3.1: Number of events expected at 50 m with a 25 m decay length for  $1 \times 10^{20}$ POT per ton detector. These predictions do not include final state effects and assume 100% detection/reconstruction efficiency.

![](_page_25_Picture_0.jpeg)

Nuclear physics with Coherent Pion Production

- $\bullet \Delta \Delta$  interaction in the nuclear medium
- Short range correlation :  $g'_{\Delta\Delta}$
- •Spin longitudinal response function :  $R_L$

•Hadron(Proton/3He) Beam ~ Prove the surface, low density region

- >Detailed study of reaction mechanism, response function
- >Input for the accurate analysis of neutrino induced CPP data
- ➢ proton induced CPP experiment @RCNP ~ test experiment ~ done

•Neutrino Beam ~ Probe the interior of the nucleus

>J-PARC neutrino beam ~ 1 GeV ~ suitable for the v-nucleus physics

CPP ~ important to know neutrino detector response ~ RICH Particle ID
Physics discussion, Detector design ~ needed

![](_page_25_Picture_12.jpeg)

![](_page_27_Figure_0.jpeg)

![](_page_27_Figure_1.jpeg)

## Electron/Photon induced CPP

Suggested by Prof. M. Sakuda

![](_page_28_Figure_2.jpeg)

#### Mixture of longitudinal and transverse responses

![](_page_28_Figure_4.jpeg)

Can extract Longitudinal response strength by reducing the Transverse component measured by e/ induced CPP

![](_page_29_Figure_0.jpeg)