Joe Nakano
- KEK FFAG group -

FFAGの開発とその応用について

April 5, 2002
『中間エネルギービームによる物理』＠ RCNP
Contents

• Introduction
 – Characteristics of FFAG
 – Applications of FFAG

• PoP FFAG
 – The first proton FFAG Accelerator

• 150MeV FFAG
 – A prototype of the practical machine

• PRISM
 – FFAG ring as muon phase rotator

• Summary
The characteristics of FFAG …

- **Fixed Field** (cf. Cyclotron)

 \[B = B_0 \left(\frac{r_0}{r} \right)^k \quad k > 1 \]

 Satisfying the cardinal condition, “zero-chromaticity”

 - High repetition rate
 - Various acceleration patterns are possible

 large beam current, flexibility, low power consumption

- **Alternating Gradient Accelerator** (cf. Synchrotron)

 strong focusing

- **Large Horizontal acceptance**

 wide aperture

... Strong focusing accelerator

 with high duty factor
Introduction - Applications of FFAG

FFAG’s catchphrase…

“High current, High repetition rate and High efficiency”

- **Medical** - Cancer therapy
 - 3dimensional spot scan method
- **Atomic Energy** - Accelerator Driven System
 - High current and efficiency beam, low power consumption and low beam loss
- **Physics** – Accumulator of secondary beam
 - Manipulation of the short-lived secondary beam
 - ex.) PRISM, Neutrino-Factory and Unstable Nuclei
- **Environmental Hygienics** – Sterilizer
 - Electron beam or X-ray source for the sanitizing and the sterilizing.

..., etc.
A brief history of FFAG Accelerator - ‘PoP FFAG’

~50’s FFAG was proposed by Ohkawa, Symon and Kolomensky.
 a electron FFAG at MURA project.
 “Proton FFAG was difficult.”
 • Difficulties of designing and manufacturing the large magnet gives
 the complex magnetic field
 • No RF cavity has the large aperture and gives the high gradient
 field over a wide-frequency

… Great advancement of technologies in 80’s ~ 90’s
 • large CPU power to do the calculation and the simulation easily
 • the invention of a Magnetic Alloy for FFAG RF cavity

1998 PoP (proof of principle) FFAG project, to construct the
 world first proton FFAG, was started.
PoP FFAG - *The first proton FFAG Accelerator in the world*

1. Basic performance
2. Studies of beam dynamics
 - Acceptance survey
 - Measurement of betatron tune with RF knockout
 - A study of resonance crossing with fast acceleration
PoP FFAG

- KEK FFAG group -
Top View of PoP-FFAG Accelerator

PoP-FFAG parameter table

- **Particle**: proton
- **Type of magnet**: radial sector type
- **No. of sector**: 8
- **Field index**: $k=2.5$
- **Energy**: 50keV => 500keV
- **Repetition rate**: 1kHz
- **Magnetic field**:
 - Focus-mag.: 0.14 - 0.32 T
 - Defocus-mag.: 0.04 - 0.13 T
 - Radial of closed orbit: 0.81 - 1.14m
- **Betatron tune**:
 - horizontal: 2.17 - 2.22
 - vertical: 1.24 - 1.26
- **RF frequency**: 0.61 - 1.38MHz
- **RF voltage**: 1.3 - 3.0kVp
Beam Position Monitor (BPM)

In FFAG, beam orbit shifts during the acceleration. => BPM must have large horizontal aperture.
Basic Performance of PoP FFAG

- Betatron tune
- Fast acceleration within 1msec
- Synchrotron oscillation
- Multi turn Injection
Betatron Tune (1)

PoP FFAG

Horizontal beam signal

Vertical beam signal

fractional part of betatron tune

\[\mu_h = 0.199 \]

\[\mu_v = 0.289 \]
Betatron Tune (2)

PoP FFAG

betatron tune vs F/D ratio

The vertical betatron tune is adjustable changing F/D ratio!

Betatron tune shift as a function of F/D ratio:

- vertical
 => shift !!

- horizontal
 => almost constant !!
Beam Acceleration

The beam is accelerated from 50keV to 500keV within 1msec.

=> The beam orbit shifts from 765mm to 1050mm.
The observed synchrotron frequency agreed with those expected by the beam simulation.
RF pattern

<table>
<thead>
<tr>
<th>magnetic field</th>
<th>RF pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>ordinary synchrotron</td>
<td>changing with regarding the magnet</td>
</tr>
<tr>
<td>FFAG synchrotron</td>
<td>constant without regarding the magnet</td>
</tr>
</tbody>
</table>

=> RF pattern can be flexibly designed in FFAG synchrotron!

\[
V_{rf} = \text{const.}, \quad \dot{q}_s = \text{const.}
\]

\[
\frac{dr}{dt} = \text{const.}, \quad \dot{q}_s = \text{const.}
\]

The various acceleration pattern is possible in PoP-FFAG.
The slow decay operation makes the multi-turn injection in possible.
Multi-turn Injection

The beam intensity can be increased with multi-turn injection.
The Studies of the beam dynamics in the PoP-FFAG.

Large horizontal acceptance
Measurement of betatron tune with RF knockout
A study of resonance crossing with fast acceleration
Horizontal Acceptance

PoP FFAG

horizontal acceptance @ injection energy

from tracking simulation

FFAG synchrotron has a large horizontal acceptance.
At the fast decay operation, the bump works as a fast kicker.

The fast decay time of bump voltage (decay time ~ revolution period) works as a fast kicker.

2.5 µsec/Div

bunched beam

bump
Horizontal acceptance survey (1)

PoP FFAG
The beam oscillations with various betatron motion

(a) Vbump=3kV
(b) Vbump=6kV
(c) Vbump=9kV
(d) Vbump=12kV
(e) Vbump=15kV

(at the 2kV no signal !!)

(at the 3kV the maximum amplitude)

(at the 12kV the optimum)

(obtained with BPM)
Horizontal acceptance survey (2)

PoP FFAG

Horizontal acceptance is about 4000L mm.mrad !
(The limit can be explained by the septum electrode.)
RF Knockout Resonance & Betatron tune

RF knockout resonance:

\[p\xi_h + q\xi_V = \pm m \pm \frac{f_{RF}}{f_{rev}} \]

(\(p, q, m = \text{integer} \))

250keV flat top

250keV flat top after RF knockout

circulating beam signal
 revolution freq.
 side-bands
 for synchrotron

FFT spectrum

circulating beam signal
 revolution freq.
 side-bands
 for synchrotron
 side-bands
 for betatron

fractional part of betatron tune

\[\xi_h = 0.195 \quad (0.199@E_{\text{inj}}) \]
Resonance & Fast Acceleration (1)

In FFAG synchrotron....... the fast acceleration => the beam can be accelerated even if the betatron tune crosses the resonance line during the acceleration!

In PoP-FFAG

Pole

\[
\frac{\partial \varphi}{\partial r} = 0, \quad \text{resonance crossing}
\]

radius

fractional part of tune

\[\varphi = \text{const.} \quad \xi = \text{const.}\]

\[50\text{keV} \quad 500\text{keV}\]

\[710\text{keV} \Rightarrow 630\text{keV} \Rightarrow \text{wall}\]

second accelerating start time

\[0 \quad 1 \quad 2 \quad \text{[msec]}\]

\[1 \quad 1.2 \quad 1.4 \quad \text{[MHz]}\]

\[0 \quad 1 \quad 2 \quad \text{[msec]}\]

\[1 \quad 1.2 \quad 1.4 \quad \text{[MHz]}\]

\[0 \quad 1 \quad 2 \quad \text{[msec]}\]

\[1 \quad 1.2 \quad 1.4 \quad \text{[MHz]}\]

\[0 \quad 1 \quad 2 \quad \text{[msec]}\]

\[1 \quad 1.2 \quad 1.4 \quad \text{[MHz]}\]

\[0 \quad 1 \quad 2 \quad \text{[msec]}\]

\[1 \quad 1.2 \quad 1.4 \quad \text{[MHz]}\]

\[0 \quad 1 \quad 2 \quad \text{[msec]}\]

\[1 \quad 1.2 \quad 1.4 \quad \text{[MHz]}\]

\[0 \quad 1 \quad 2 \quad \text{[msec]}\]

\[1 \quad 1.2 \quad 1.4 \quad \text{[MHz]}\]

\[0 \quad 1 \quad 2 \quad \text{[msec]}\]

\[1 \quad 1.2 \quad 1.4 \quad \text{[MHz]}\]

\[0 \quad 1 \quad 2 \quad \text{[msec]}\]

\[1 \quad 1.2 \quad 1.4 \quad \text{[MHz]}\]

\[0 \quad 1 \quad 2 \quad \text{[msec]}\]
the beam was accelerated from 650keV to 710keV in various accelerating speed!

- $q_s = 20$ Deg
- $q_s = 10$ Deg
- $q_s = 4$ Deg
- $q_s = 2$ Deg

accelerating speed:
slow => doesn’t cross the resonance line
fast => can cross the resonance line
Resonance & Fast Acceleration (3)

- @700keV
- @705keV
- @708keV
- @710keV

Accelerated up to around the resonance!
Summary

PoP FFAG

*the measurements of the machine parameters:

- The PoP-FFAG works as designed.
- The proton can be accelerated within 1msec.
- It was ascertained that

 tune is adjustable as a function of F/D ratio,

 various acceleration pattern is possible,

 and the beam intensity increased with multi-turn injection.

*the studies of the beam dynamics:

- Horizontal acceptance at injection energy is at least 4000L mm-mrad.
- Betatron tunes almost didn’t change between 50keV and 250keV.
- The beam was accelerated even if the betatron tune crosses the resonance.