Microscopic spin–orbit potentials for 3He elastic scattering at intermediate energies

M. KATSUMA and Y. SAKURAGI

Osaka City University
The central part of optical potentials for 3He elastic scattering has been determined from optical model analyses up to $E_{\text{lab}} = 450$ MeV.

The spin–orbit part of optical potentials for 3He scattering is unknown due to lack of experiments using polarised 3He beams.

$$E_{\text{lab}} = 33 \text{ MeV} \ (\text{Birmingham}) \quad \text{only one data}$$

There is an experimental project using polarized 3He beams at $E_{\text{lab}} = 450$ MeV. (RCNP)

We analyse the 3He elastic scattering with the optical model using double folding potentials.
Our Analyses

Elastic scattering of 3He particles

3He+58Ni \quad 33 – 450 MeV \quad $d \sigma/ d \Omega$

3He+58Ni \quad E_{lab} = 450 MeV \quad Ay

RCNP （preliminary results）
Volume integrals of real central potentials

A unique potential family of central part for real optical potentials in 3He elastic scattering has been decided.

- Low incident energies deep or shallow potentials
- Energies higher than 40 MeV/N the shallow potential becomes the best-fit potential.
Folding potentials

\[V^N(r) = \int \rho_1(r_1) \rho_2(r_2) \, u_{NN}(s) \, dr_1 \, dr_2 \]

The effective Nucleon-Nucleon interaction (DDM3Y)

\[u_{NN} = u_{CE}(s) + u_{SO}(s) \, L \cdot \sigma \]

Optical Potentials

\[U(r) = N_R \, V_{CE}^N(r) + N_{LS} \, V_{SO}^N(r) \, L \cdot \sigma \]
\[+ V_C^C(r) + i \, W_{WS}(r) \]
$^{3}\text{He} + ^{58}\text{Ni}$ Elastic Scattering

$E_{\text{lab}} = 33.3 \text{ MeV}$

$E_{\text{lab}} = 37.4 \text{ MeV}$

$E_{\text{lab}} = 43.7 \text{ MeV}$

$E_{\text{lab}} = 51.4 \text{ MeV}$

$E_{\text{lab}} = 73.2 \text{ MeV}$

$E_{\text{lab}} = 83.5 \text{ MeV}$

$N_{R} = 1.0 \pm 0.08$
Elastic Scattering

$^3\text{He} + {}^{58}\text{Ni}$

$N_R = 0.968$

$E_{\text{lab}} = 33.3 \text{ MeV}$

$N_{LS} = 1.0$

$\frac{d\sigma}{d\Omega}$ (mb/steradian)

θ_{cm} (degree)
Elastic Scattering

$^3\text{He} + ^{58}\text{Ni}$

$E_{\text{lab}} = 450\text{ MeV}$

DF model

$d\sigma/d\Omega (\text{mb/sr})$

$\theta_{\text{cm}} (\text{deg.})$

$N_l = 1.0$

A_y data: Kamiya et al. (Preliminary)
Elastic Scattering

$^3\text{He} + ^{58}\text{Ni}$

$E_{\text{lab}} = 450 \text{ MeV}$

$N_{LS} = 0.50$

A_y data: Kamiya et al. (Preliminary)
We analyses elastic scattering for the $^3\text{He}+^{58}\text{Ni}$ system at incident energies from 33 MeV to 450 MeV with the double folding potentials using M3Y interaction.

- The cross-section data for ^3He elastic scattering are reproduced by our folding potential without the large modification of real central potentials, i.e. $N_R \sim 1.0$.

- The double folding model predicts large analyzing power compared with the recent experimental data at $E_{\text{lab}} = 450$ MeV (RCNP).

- The renormalization factor N_{LS} of spin–orbit potentials is 0.5 to reproduce the experimental data.