コヒーレント 中間子生成による 核力短距離相関の研究

酒見 泰寛

Research Center for Nuclear Physics (RCNP) Osaka University

Contents

- Physics motivation
- Coherent Pion Production
- Proton induced CPP at RCNP
- Neutrino beam at J-PARC
- Summary

 $\Delta\Delta$ interaction in the nuclear medium ~ short range correlation of Δ -hole: g' $_{\Delta\Delta}$

Short range correlation ~ Landau-Migdal parameters : $g' = g'_{NN}, g'_{N\Delta}, g'_{\Delta\Delta}$

Phase transition of Nuclear matter ~ Pion condensation...

Nuclear Correlations and Δ Effects

 $\pi + \rho + g'$ model a'=0.6 $V^{\text{eff}}(\mathbf{q}, \boldsymbol{\omega}) = V_{\text{LM}} + V_{\pi}(\mathbf{q}, \boldsymbol{\omega}) + V_{\rho}(\mathbf{q}, \boldsymbol{\omega})$ =0MeV Landau-Migdal parameters:g' $V_T = V_a + V_a$ $K_0 = C_0 g'$, (MeV fm^B) $V_{IM} = C_0 \left[g'_{NN} (\sigma_1 \cdot \sigma_2) (\tau_1 \cdot \tau_2) \right]$ $+\left\{\frac{f_{\pi N\Delta}}{f_{mn}}g'_{N\Delta}\left((\sigma_1\cdot S_2)(\tau_1\cdot T_2)+(\sigma_1\cdot S_2^+)(\tau_1\cdot T_2^+)\right)\right\}$ $V_L = V_{\pi} + V_{\phi}$ V, (axg) $+ \frac{f_{\pi N\Delta}^{2}}{f_{\pi N\Delta}^{2}} g'_{\Delta\Delta} (S_{1} \cdot S_{2}^{+}) (T_{1} \cdot T_{2}^{+}) \bigg\} + (1 \leftrightarrow 2) \bigg|$ V, (o-g) $q \,({\rm fm}^{-1})$ • Energy of GTGR $\sum Exp.$ g's affect V^{eff} at large q $-g'_{N\Delta}$: Coupling between N and Δ at q=0Exp. • GT quenching $-g'_{AA}$: Few experimental information • Coherent pion production is sensitive to $g'_{\Delta\Delta}$

GT Strength and Landau-Migdal Parameters

B(GT) (MeV⁻¹

- g' Dependence of GTGR
 - RPA(1p1h) by Ichimura group
 - GTGR peak position
 - Strongly depends on g'_{NN}

$$-g'_{NN}=0.6 \pm 0.1$$

- Weak $g'_{N\Delta}$ dependence
- GTGR strength
 - Quenched with $g'_{N\Delta} > 0$
- $g'_{N\Delta}$ Dependence of Q
 - $Q=0.86 \pm 0.07$ (quadratic sum of uncertainties)
 - Q evaluated in RPA
 - Strongly depends on $g'_{N\Delta}$

 $-g'_{N\Delta}=0.35 \pm 0.16$

Pion Condensation in Neutron Star -EOS and Pion Cooling-

- Under universality ansatz
 - g'_{NN}=g'_{NA}=g'_{AA}=0.6 ~0.7
 - Critical density: $\rho_c \sim 4\rho_0$
 - Pion condensation "does not" occur
- With new information on g'
 - Universality ansatz "does not" hold
 - $g'_{NN}=0.6 \pm 0.1$, $g'_{N\Delta}=0.35 \pm 0.16$
 - $\rho_{\rm c} \sim 2\rho_0 \,({\rm for}\, \boldsymbol{g'}_{\boldsymbol{\Delta}\boldsymbol{\Delta}} = \boldsymbol{\boldsymbol{\theta}}.\boldsymbol{\boldsymbol{5}})$
 - Pion condensation would be realized in N.S. (3C58 etc.)
 - π -cond. accelerates NS cooling

Critical density ρ_0 is sensitive to $g'_{\Delta\Delta}$ Experimental determination $g'_{\Delta\Delta}$ is important

Pionic Enhancement in QES

- Pionic ID_q (${}^{12}C, {}^{40}Ca$) at q=1.7 fm⁻¹
 - RCNP data
 - =22 °, T_p =346 MeV
 - LAMPF data
 - =18 °, T_p =494 MeV
- Pionic Enhancement
 - Exp. Data > Free (w/o Correlation)
 - RPA is sensitive to g'_{NN} and $g'_{N\Delta}$
 - RPA is insensitive to $g'_{\Delta\Delta}$
- Landau-Migdal Parameters
 - g'_{NN} ~0.7
 - $g'_{N\Delta} = 0.2(LAMPF) 0.4(RCNP)$
 - Consistent with g's deduced from GT

• $g'_{NN}=0.6 \pm 0.1, g'_{N\Delta}=0.35 \pm 0.16$

- q-dependence of g's is weak

T. Wakasa et al. *Phys. Rev. C 69, 054609 (2004)* T. N. Taddeucchi et al. *Phys. Rev. Lett. 73, 3516 (1994)*

Summary of previous experiments —Remaining subjects —

- $g'_{NN} > g'_{N\Delta}$ (universality does NOT hold)
- q-dependence of g'_{NN} and $g'_{N\Delta}$
 - q=0 from GT
 - q=1.7 and 2.0 fm⁻¹ from QES
 - q-dependence of g' is weak
 - Consistent with theoretical predictions
 - W.H.Dickhoff et al.Phys. Rev. C 23, 1154 (1981)
 - Small g' $_{N\Delta}$ produces largely attractive spin-longitudinal (pionic) residual interaction
 - Pion condensation in N.S. : More likely
- NO information on $g'_{\Delta\Delta}$ (Last unknown)
 - $g'_{\Delta\Delta}$ is important to determine ρ_C for pion condensation
 - **CPP** is promising to determine $g'_{\Delta\Delta}$ experimentally

What is "Coherent Pions (mesons)"

- Coherent Pions in Charge-Exchange Reactions
 - Target nucleus is left to the g.s.
 - p + A(g.s.) $n + p^+ + A(g.s.)$
 - ${}^{3}He + A(g.s.) = t + p^{+} + A(g.s.)$

What is interesting !

- Virtual pion (elastic) scattering (by Ericson)
 - Elastic means the target nucleus is left to the g.s.
 - Nuclear response can be studied in wide (q,w) region where we cannot access with real pions

Sensitive to the nuclear correlations (many body effects) (Difference from the simple Fermi-Gas model w/o correlations)

Kinematics of Coherent Pion Production Process

• Kinematics at zero degrees

p or ³He

(p,m)

target (g.s.)

Initial state

Final state

 $\xrightarrow{\pi^+(q,m_\pi)} \\ \xrightarrow{n \text{ or } t} (p-q,m)$

target (g.s.)

- (0, M) ($\approx 0, M$) Momentum transfer q for Coherenet Pion Production (CPP)
 - Neglect the recoil energy ($\sim 1 \text{ MeV}$)
 - Non-relativistic kinematics for simplicity

$$\frac{p^{2}}{2m} = \frac{(p-q)^{2}}{2m} + \frac{q^{2}}{2m_{\pi}}$$

$$q = \frac{2pm_{\pi}}{M+m_{\pi}} \approx \frac{2pm_{\pi}}{M}$$

 $\begin{cases} q = 1.8 \text{ fm}^{-1} \text{ for } (p,n) \text{ at } 800 \text{ MeV} \\ q = 1.6 \text{ fm}^{-1} \text{ for } (^{3}\text{He},t) \text{ at } 2 \text{ GeV} \\ \hline CPP \text{ is a process with large} \\ momentum transfers of } q = 1.5 - 2.0 \text{ fm}^{-1} \end{cases}$

Theoretical investigation for A(p,n) and CPP

- Physical processes important in Δ region
 - Coherent Pion Production
 - Pions in final state

- Quasi-free Δ decay
 - Δ (in Δ -h) decays into π + N
 - Pions in final state

Real pion Spin-Isospin Impact • Real pion

- $-\Delta$ spreading
 - Δ (in Δ-h) interacts with N (Δ conversion process)
 - $\ \Delta + N \qquad N + N$
 - No pions in final state

Pionic Correlations in Δ **-h States**

- π and ρ -meson exchange in nuclear mean field
 - $-\pi + \rho + g'$ model interaction between Δ -h states

$$V_{\rm eff}^{\Delta\Delta} = V_L^{\Delta\Delta}(q,\omega) + V_T^{\Delta\Delta}(q,\omega)$$

$$V_L^{\Delta\Delta}(q,\omega) = W_L^{\Delta\Delta}\left[\left\{ (T_1 \cdot T_2^*)(S_1 \cdot \hat{q})(S_2^* \cdot \hat{q}) + (T_1 \cdot T_2)(S_1 \cdot \hat{q})(S_2 \cdot \hat{q}) \right\} + h.c.\right]$$

Spin - longitudinal $(\mathbf{S} \cdot \mathbf{q} \mathbf{T})$ channel π - exchange + short - range repulsion (g') $V_T^{\Delta\Delta}(q,\omega) = W_T^{\Delta\Delta} [\{ (T_1 \cdot T_2^*)(S_1 \times \hat{\mathbf{q}})(S_2^* \times \hat{\mathbf{q}}) + (T_1 \cdot T_2)(S_1 \times \hat{\mathbf{q}})(S_2 \times \hat{\mathbf{q}}) \} + h.c.]$ Spin - transverse $(\mathbf{S} \times \mathbf{q} \mathbf{T})$ channel ρ - exchange + short - range repulsion (g')

S and T:Spin and Isospin transition operator from N to Δ

Pionic Correlations in \Delta-h States

Signatures of CPP process in previous experiments

- CPP has been considered as a reason of the downward energy shift of the D resonance peak
 - (³He,t) at 2 GeV
 - D. Contardo et al. PLB168,331 (1986)
 - $p({}^{3}\text{He},t)$ peaks at T_{t} =1675 MeV (w=325 MeV)
 - Shift from $m_D m_N = 294$ MeV is due to the q-dependence of form factors.
 - $A({}^{3}\text{He},t)$ peaks at T_{t} =1745 MeV (w=255 MeV)
 - 70 MeV shift from *p*(³He,*t*)
 - 40 MeV shift is due to change in the D self-energy (mass) in nuclear mean field
 - Leaving 30 MeV shift would be due to nuclear correlation effects including CPP

Inclusive process and pionic correlations

- Is the downward energy shift of the Δ resonance peak <u>a "direct" signature of pionic correlations</u> (attractive $W_L^{\Delta\Delta}$)?
 - Answer is "No". Because inclusive cross sections includes both
 - Spin-longitudinal (pionic) modes
 - Spin-transverse (non-pionic, ρ -mesonic) modes
- How to separate these two modes "experimentally"
 - Measure a complete set of polarization transfer observables
 - Measure spin transfer *S* with its direction
 - Separate s into $S \cdot q$ and $S \times q$ components
 - Measure π decay of Δ in coincidence with the ejectile
 - Exclusive measurement
 - Extract pionic *S* '*q* component

Fraction of CPP and other processes in Δ **region**

- **Experimental Data**
 - ¹²C(³He,*t*) at 2 GeV and 0 °
 - D.Contardo et al. Phys. Lett. B 168, 331 (1986) $\int_{0.80^{-1.20^{-1.$
 - Clear Δ -resonance peak at w=260 MeV
- **Theoretical calculations**
 - Residual interaction with $g'_{NN}=0.6$ and $g'_{NA}=g'_{AA}=0.33$
 - T.Udagawa et al. Phys. Rev. C 49, 3162 (1994)
 - CPP peaks at lower w compared with QF
 - *Pionic correlation effect*
 - **CPP** is 10-20% of the total strength

Inclusive is NOT sensitive to CPP (Pionic correlations) **Exclusive measurement is important!**

Sensitivity to pionic correlations —Ratio of spin-longitudinal and spin-transverse modes —

× **Real (Experimental) impact is Ouasi-Free** spin-isospin interaction via (³He,t) TR - **NOT** a pure (virtual) pion - Excite several J^{π} modes • Spin-longitudinal (LO:pionic) • Spin-transverse (TR:non-pionic) **Theoretical calculations ∆** spreading $- {}^{12}C(p,n)$ at 800 MeV and 0 ° TR - Residual interaction with $g'_{NN}=0.6$ and $g'_{NA}=g'_{AA}=0.33$ T.Udagawa et al. Phys. Rev. C 49, 3162 (1994) - TR (non-pionic) modes are dominant in Quasifree and Δ -spreading LO • PT measurements are needed to study LO (pionic) modes - LO (pionic) is dominant in CPP • Sensitive to pionic correlations in nuclei

Energy transfer ω (MeV)

How to distinguish CPP from other processes

Main processes in Δ region are Coherenet Pion Production Pions in final state • Quasi-Free Δ decay Δ spreading No pions in final state CPP **CPP** Select $t+\pi^+$ $^{12}C(g.s.)$ Quasi-Free Coin. Measure. <u>∆ spreading</u> **Measure correlation between** momentum-transfer q and lo/dΩ momentum $p_{\pi+}$ of pion TOTAL(=LO+TR) - Strong (parallel) correlation LO has been expected T.Udagawa et al. $\Theta(q, p_{\pi})$ (deg) Phys. Rev. C 49, 3162 (1995)

CPP Experiment at Saturne

- ${}^{12}C({}^{3}He,tp^{+}){}^{12}C(g.s.)$ at 2 GeV and $q_t \sim 0$ °
 - T_t=2GeV: Dispersion matching was tried
 - poor energy resolution?

$$- q_{3He} = -1 \circ \sim 4 \circ$$

- Analyzed by D-magnet and detected by DCs
- Poor energy resolution of 15 MeV

$$- q_p = 20 \circ \sim 132 \circ$$

• Analyzed and detected by CDC

Results of CPP Experiment at Saturne

- Could not separate ¹²C(g.s.) (CPP) from excited states
- Strong (parallel) correlation between q and p_{π}
 - Signature of CPP
 - Consistent with theoretical prediction
- Downward energy shift of the D resonance peak for CPP
 - Signature of (attractive)
 pionic correlations in nuclei

Experimental setup

Charged particle detector in the sweeping magnet

Neutron Counter

Position sensitive Neutron Counter (liq Sci.) TOF length ~ 70 m Energy resolution : 300 keV Detection efficiency : 15 % @150~400 MeV

Gas Electron Multiplier (GEM) detector

—For charged particle (π^+ ...) *detection in magnet —*

CPP Test Experiment

• Neutron energy spectrum

neutron energy loss (MeV)

- CPP region ~ enhancement ? ~ detailed analysis continued
- Poor resolution for π
- Background ~ study in progress
 - beam halo ~ beam optics tuning
 - *Edge scattered high energy protons* ~ almost same flight time as pions
- Future measurement
 - High resolution with GEM
 - High statistics data

Density dependence of g'

CPP Experiment at RIBF with ³He⁺⁺ Primary Beam

Proposed by Dr. Wakasa

- High resolution beam
 - $400 \text{ MeV/n} {}^{3}\text{He}^{++}\text{: Dp=}0.03\%$ (s) DE=1.4 MeV (FWHM) : OK
- High resolution triton measurement
 - Requirement: DE ~ 2 MeV and q < 2.5 ° including 0 °
 - Facility (not studied)
 - Zero-degree Spectrometer
 - SHARAQ
 - Big-RIPS
 - $Dq = \pm 40 \text{ mrad} = \pm 2.3 \circ : OK$
 - D = 2.3 m DE = 1.7 MeV (FWHM) : OK

実験機

Neutrino Beam at J-PARC

Beam energy ~ 1 GeV suitable for Nuclear Physics in the Δ resonance region

Detector ~ Liquid Sci. with W.L.S Target • Proton

•Carbon !

Heavy Nucleus

Physics and Detector design ~ LOI ~ in preparation

Summary

- CPP is a promising tool to obtain the information on $g'_{\Delta\Delta}$
- Test experiment at RCNP ~ performed
 - CPP signature ? ~ should be studied further
 - High resolution measurement with GEM
 - High statistics data ~ accumulation run
- Need theoretical calculation on CPP
- CPP experiments are performed/proposed at several places.
 - ¹²C(ν_µ,µ⁻π⁺)¹²C(g.s.) at J-PARC (W.G., Sakemi)
 First v-CPP data from K2K:no-evidence for CPP
 - can be performed with ΔS experiment
 - ${}^{12}C({}^{3}He,t\pi^+){}^{12}C(g.s.)$ at RIBF (Dr. Wakasa)
 - Density dependence of g' can be investigated

A.Hosaka and H.Toki, PTP 76, 1306 (1986)