

化学環境と温度変化における原子核の崩壊定数

軌道電子捕獲崩壊(EC)核種 放射性ベリリウム-7 (⁷Be:100%EC) 半減期: 53.3日(Table of Isotopes)

大槻 勤 東北大学大学院理学研究科 原子核理学研究施設

内容

- 1. 崩壊定数(半減期)変化のメカニズム及び測定の歴史
- 2. ベリリウム-7の生成と半減期測定の経緯
- 3. 特殊な環境に置かれたベリリウム-7の半減期はどれだけ変化するか 実験結果を紹介

·フラーレン(C60)内(内部は真空)のベリリウム-7の半減期は?

・温度変化による半減期の変化は?

(C60内のベリリウム原子の熱運動している?: 293K and 5K)

4. C60内のベリリウム原子の電子状態:理論的考察

大野ら(横浜国立大学)

5. まとめ

軌道電子捕獲崩壊

$$-\frac{dN}{dt} = \lambda N$$

 $N = N_0 e^{-\lambda t}$

λ:崩壊定数 ← 原子核にって固有

 $\beta^-, \beta^+, EC decay$ $p+e^- \cdots > n + \nu_e$ $\psi_{a}^{a} = \psi_{a}^{a}$ $< i \mid \mathbf{H}(\beta) \mid f >$ *i*; out side electron density

Environmental effect??

化学的電子の環境、金属内の電子構造 系の温度、系の圧力

これまでの研究から

化学形による変化 (BeO, BeCl₂, BeF₂ etc.)
E. Segre *et. al.*, Phys.Rev. 71, 39(1947).
E. Segre *et. al.*, Phys.Rev. 75, 39(1949), 81, 284(1951).
J.J. Kraushaar *et. al.*, Phys. Rev. 90, (1953).
R. Bouches *et. al.*, J. Phys. Radium 17, 363(1956).
H.W. Wright *et. al.*, Nucl. Sci. Eng. 2 427(1957).
H.W. Johlige *et. al.*, Phys.Rev. C2, 1616(1970).
C.A. Huh *et. al.*, Earth and Olanetary Sci. Lett. 171, 325(1999).

A3. Possibility of Altering the Decay Rate of a Radioactive Substance. EMILIO SEGRÈ, University of California, Berkeley.—The radioactive decay constant of a substance decaying by orbital electron capture is proportional to $|\psi(0)|^3$ of the electrons. In the case of a light element like Be⁷ it may be possible to alter this quantity by an appreciable amount by putting the Be in different chemical compounds. We would then have a slight change of the radioactive half-life of the Be in different compounds. The magnitude of the effect may be in the neighborhood of one percent, but it is practically impossible to give a quantita-

化学形による変化

H.W. Johlige et al. Phys. Rev. C 2, 1616(1970)

ホスト物質による半減期の変化

圧力による壊変定数の変化の割合

• L. Liu etal.Earth and Planetary Sc. Lett. 180, 163(2000)

- ^o Hensley et al. Science 181, 1164(1973)
- Gogarty et al. Naval Research Tec. Pep. 7(1963).

化学的環境で特殊な環境をつくりだせるものはなにか? → "C60、C70" (1985年にKrotoらによって発見)

1)フラーレンに注目して、その中に放射性同位体(⁷Be, ⁵¹Cr, etc.)を内包化を実現
 (フラーレン内部は化学的に特殊な環境?)。
 → 半減期測定実験

(実は)

2) 内包フラーレンの生成技術はまだ開発されていない。

(内包が量的に実現されると)

・M@C60の機能を多方面に応用(触媒の開発、超伝導性、ナノ半導体) ・放射性同位体の内包化: RIナノカプセルとしての機能性の応用 →毒性の消去、生体内へのトレーサー利用

(手法)

·C60を作る際に、放射性同位体を内包する(アーク法、レーザー法)。

- ・C60を作ったあとで放射性同位体を挿入する。
 - 原子核反応の反跳エネルギーを利用してC60に放射性同位体を挿入する。 ベリリウムの(⁷Be)内包フラーレン(C60)の実現

[→]C60中の⁷Beの半減期測定実験に入る

ベリリウム原子の内包:⁷Be@C60

T. Ohtsuki et al., Phys. Rev. Lett. 77, 3522(1996)

比較測定法を用いた実験

・1997年~測定開始:当初はBe@C60の収率、測定が安定せず。

異なった物質中でのベリリウム-7からの γ 線(478keV)を交互測定

核反応による⁷Be@C60の製造

High Performance Liquid Chromatography

Be金属に⁷Beを製造(比較試料)

⁷Be nuclides are produced uniformly in Be metal by bremsstrauhlung

測定装置

Automated sample changer controlled by computer

time is corrected multi-channel analyzer standard clock •化学的環境 Be metal(7 Be) ・温度 Ge-detector 293K radio long-wave 7Be@C60 Temperature dependence Pb shield of decay rate at holder rail 1. Room T (293K) sample holde 2. He T (5K) driver sample rail Alternate measurement in each 6 hours interval

Ge検出器によるγ線スペクトル

Be金属試料 ⁷Be@C60試料 10⁵ 10⁵ ⁷Be 478keV 10⁴ 478keV 104 478 keV 10⁴ ⁷Be Counts Counts 104 ⁴⁰ K 478keV 1461 keV 10 10 10³ • 1460keV 10³ Counts Counts 40K 460 480 500 460 490 Channel / keV Channel/keV 10² 10^2 3/2 ⁷⊿Be FC 10¹ 1/2 478 keV 10.4 % 10¹ 0 89.6 % ٤Li 10⁰ 10⁰ 500 1000 1500 2000 0 1000 1500 0 500 2000 Channel / keV Channel / keV

measurements: 6hours 21480 sec (live time)+ 120 sec (sample change) dead time: about 15sec \rightarrow 8 sec (~0.04%), this does not influence

⁷Be@C60試料とBe金属試料内の⁷Be

^{QHQKU} DMol³を用いてDFT(密度汎関数法)によってBe@C60の構造最適化

(交換相関関数はBLYP 法)

→ 安定点を探り、原子核位置での電子密度を導出

C60中のベリリウム元素の安定位置

Calculation was done for the 962 Be sites

Center of C60
 Qunder single bond
 Qunder 5-memnered ring
 Qunder 6-membered ring

安定位置における電子状態(1)

安定位置における電子状態(2)

核位置での電子密度の計算結果(at T=0)

UNIVERSITY	electron densi	ty t	total ener	rgy				
potential	$(e^-/{ m \AA}^3)$		difference (eV) potential coefficients $(eV/Å^2)$					
minimum of Be atom					a_{i+} ,	a_{i-}	b_{i+}, b_{i-}	c_{i+}, c_{i-}
C ₆₀ center (最安定)	36.016	0	$0.0 \pmod{100}$	stable)	0.545,	0.545	0.545, 0.545	0.545, 0.545
under 6-membered ring	35.332	0	0.142		1.773,	1.657	1.081,1.074	3.752, 3.377
under 5-membered ring	35.287	0	0.068		1.891,	1.982	1.836, 1.689	6.740, 2.365
under single bond	35.243	0	0.098		1.195,	0.843	1.921,1.921	6.431, 8.765
Be atom	35.954	1.6	5% C	Corresp	ond t	to experir	mental value 1	.5%
Be metal	35.423	_			_	_		

 C_{60} center > Be atom > Be metal > other sites inside C_{60} .

⁷BeがC60中央にいることで半減期が短くなった実験結果を説明できる

核位置での電子密度の計算結果 (at *T*=293)

Calculation include Boltzmann distribution of the nuclear position r T=0KCenter of C60 36.016(e^{7}/A^{3}) 35.899 (e^{-}/A^{3}) Diff: 0.33% to Be metal (計算)

T=5KT=293KExperimental 52.47 ± 0.04 days52.65 days— Diff: 0.34% to Be metal (実験)Half-life— ①

室温では Ratchet motion

T(1/2) = 53.3 days in Table of Isotopes

Half-life of neutral ⁷Be!!