J-PARC Neutrino Beam and Detectors

2005/02/24 @RCNP Osaka
T. Ishii (KEK)
T2K collaboration

- Formed in May 2003
- 12 countries, 53 institutions
 ~150 collaborators
- Spokesperson: K. Nishikawa

France: CEA Saclay
Japan: ICRR, U. Tokyo, KEK, Tohoku U., Hiroshima U., Kyoto U., Kobe U., Osaka City U., U. Tokyo, Miyagi U. of Education
Poland: Warsaw U.
Russia: INR
Spain: U. Barcelona, U. Valencia
Switzerland: U. Geneva
UK: RAL, Imperial College London, Queen Mary Westfield College London, U. Liverpool
Three Flavor Mixing in Lepton Sector

Weak eigenstates

\[\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = U_{\text{MNS}} \cdot V_{\text{MNS}}^{\text{CP}} \cdot \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix} \]

mass eigenstates

\[m_1 \]
\[m_2 \]
\[m_3 \]

\[U_{\text{MNS}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & +c_{23} & +s_{23} \\ 0 & -s_{23} & +c_{23} \end{pmatrix} \begin{pmatrix} +c_{13} & 0 & +s_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13} e^{i\delta} & 0 & +c_{13} \end{pmatrix} \begin{pmatrix} +c_{12} & +s_{12} & 0 \\ -s_{12} & +c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \]

\[c_{ij} = \cos(\theta_{ij}), \quad s_{ij} = \sin(\theta_{ij}) \]

\[\theta_{12}, \theta_{23}, \theta_{13} \]
\[+ \delta \quad (+2 \text{ Majorana phase}) \]
\[\Delta m_{12}, \Delta m_{23}, \Delta m_{13} \]
Current Knowledge

θ_{13}

m^2

Atmospheric ν

ν_e

ν_μ

ν_τ

m_3^2

$\sim 3 \times 10^{-3} \text{eV}^2$

$\sim 5 \times 10^{-5} \text{eV}^2$

Solar ν

m_1^2

m_2^2

m_1^2

$\sim 5 \times 10^{-5} \text{eV}^2$

$\sim 3 \times 10^{-3} \text{eV}^2$

Next step

sterile, θ_{13}, sign of Δm^2, CP violation.....
Neutrino Oscillation
as a unique way to access neutrino (very small) mass and mixing

Oscillation Probabilities when $\Delta m_{12}^2 \ll \Delta m_{23}^2 \approx \Delta m_{13}^2$

ν_e appearance
$$P_{\mu \rightarrow e} \approx \sin^2 \theta_{23} \cdot \sin^2 2\theta_{13} \cdot \sin^2 \left(1.27 \frac{\Delta m_{23}^2 L}{E_\nu}\right)$$

ν_μ disappearance
$$P_{\mu \rightarrow \nu_x} = 1 - (P_{\mu \rightarrow e} + P_{\mu \rightarrow \tau}) \approx 1 - P_{\mu \rightarrow \tau}$$

ν_τ appearance
$$P_{\mu \rightarrow \tau} \approx \cos^4 \theta_{13} \cdot \sin^2 2\theta_{23} \cdot \sin^2 \left(1.27 \frac{\Delta m_{23}^2 L}{E_\nu}\right)$$

CPV
$$A = \frac{P_{\mu \rightarrow e} - P_{\mu \rightarrow \bar{e}}}{P_{\mu \rightarrow e} + P_{\mu \rightarrow \bar{e}}} \approx \frac{\Delta m_{12}^2 L}{4E_\nu} \cdot \frac{\sin 2\theta_{12}}{\sin \theta_{13}} \cdot \sin \delta$$

L : flight length(km), E_ν : neutrino energy(GeV), $\Delta m_{ij}^2 = m_i^2 - m_j^2$, m_i : mass eigenvalues(eV)
Overview of experiment

- Super-K: 50 kton Water Cherenkov
- ~Mton “Hyper Kamiokande”
- Kamioka
- JAEIRI (Tokai-mura)

νµ beam of ~1GeV

1st Phase
- νµ → νx disappearance
- νµ → ve appearance
- NC measurement

2nd Phase
- CPV
- Proton decay
Principle

– Neutrino energy reconstruction by using Quasi-Elastic (QE) interaction.
 • Oscillation pattern measurement
 • BG due to miss-reconstruction of inelastic interaction
 – Greatly improved by using narrow spectrum

– Narrow spectrum tuned by the Off-Axis method at the oscillation maximum.
 • High sensitivity
 • Less background

– Gigantic water Cherenkov detector
 • High statistics
 • High efficiency for low energy
 • Good PID (e/µ) capability

$\Delta m^2 = 2.2 \sim 3.2 \times 10^{-3} \text{eV}^2$

$E_\nu = 0.5 \sim 0.8 \text{GeV}$
Neutrino Energy E_ν reconstruction

CC quasi elastic reaction

$\nu_\mu + n \rightarrow \mu + p$ \hspace{2cm} $\nu_\mu + n \rightarrow (\mu^- + p + \pi^-)$

$\theta_\mu = (E_\mu, p_\mu)$

$E_\nu = \frac{m_N E_\mu - m_\mu^2 / 2}{m_N - E_\mu + p_\mu \cos \theta_\mu}$

CC cross sections

Inelastic (BG)

ν_μ CC cross sections

True E_ν (GeV) vs. Reconstructed E_ν (GeV)
Off Axis Beam

(ref.: BNL-E889 Proposal)

- Quasi Monochromatic Beam
- x 2~3 intense than NBB

Tuned at oscillation maximum

Statistics at SK

(OAB 2.5 deg, 1 yr, 22.5 kt)

~ 2200 ν_μ tot
~ 1600 ν_μ CC
$\nu_e \sim 0.4\%$ at ν_μ peak

Neutrino energy spectrum $\sigma \times \Phi$
(Note $\sigma \propto E$)
Flux

OAB2.5deg, $E_p=40$GeV
SuperKamiokande@Kamioka, Japan

Water Cherenkov detector

- 1000 m underground
- 50,000 ton
 (22,500 ton fid.)
- 11,146 20 inch PMTs
- 1,885 anti-counter PMTs

Since 1996.
Accident on 2001.
Partial recovery on 2002.
(Full recovery on 2006)
ν_μ disappearance

1ring FC μ-like

Oscillation with
$\Delta m^2 = 3 \times 10^{-3}$
$\sin^2 2\theta = 1.0$

No oscillation

Reconstructed E_ν (MeV)

Ratio after BG subtraction

Fit with $1 - \sin^2 2\theta \sin^2(1.27 \Delta m^2 L/E)$

$\sim 3\%$
sin^22\theta_{13} from \nu_e appearance

- **90\% C.L. sensitivities**
- **Expected Signal+BG**
 - \(\sin^22\theta_{13} = 0.10\)
 - \(\sin^22\theta_{23} = 1.0\)
 - \(\Delta m^2 = 0.003\text{eV}^2\)
- **Total BG**
- **BG from \nu_\mu + \text{anti}\nu_\mu**

Background in Super-K (as of Oct 25, 2001)

<table>
<thead>
<tr>
<th>sin^22\theta_{13}</th>
<th>(\nu_\mu)</th>
<th>(\nu_e)</th>
<th>(\nu_\mu)</th>
<th>(\nu_e)</th>
<th>total</th>
<th>Signal</th>
<th>Signal + BG</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>12.0</td>
<td>10.7</td>
<td>1.7</td>
<td>0.5</td>
<td>24.9</td>
<td>114.6</td>
<td>139.5</td>
</tr>
<tr>
<td>0.01</td>
<td>12.0</td>
<td>10.7</td>
<td>1.7</td>
<td>0.5</td>
<td>24.9</td>
<td>11.5</td>
<td>36.4</td>
</tr>
</tbody>
</table>
Facilities
Neutrino facilities at Tokai

\[p^+(\text{target}) \rightarrow \pi \rightarrow \nu_\mu + \mu \]

Components

- Proton beam transport
- Target/Horn system
- Decay pipe
- Beam dump
- Muon monitor
- First near detector (280m)

Kamioka direction
Primary beam line

Preparation section
Normal conducting 750W loss

Arc Section (R=105m)
Superconducting combined function magnets
- First application in the world
- Reduce cost (40→28 mags) comp. w/ sep. func.
- Larger acceptance
- 1W/m loss

Final Focusing Section
Normal conducting 250W loss

- Single turn fast extraction
- 8 bunches/≈5μs
- 3.3×10^{14} proton/pulse
- 3.53 sec cycle
- $\varepsilon = 6\pi$ mm.mr, $\Delta p/p = 0.31\%$ @50GeV
- Total bending = 84.5°
Superconducting combined function magnet

- Dipole Field: 2.587 T
- Quad. Field: 18.62 T/m
- Precision: 10^{-3}@r=5cm
- Magnetic Length: 3.3m
- Current: 7345A
- Inductance: 14mH
- Stored Energy: 0.38MJ

Two magnets in 1 vessel
Overview of target area

Beam window

Baffle

Target & 1st horn

2nd horn

3rd horn

Helium

collimator

Decay volume
Decay pipe common for SK/HK

Possible site for Hyper-K

Beam eye

Decay pipe have to cover p/π beam axis -(3~4)deg corresponding to $\Delta m^2 = 2.2\sim 3.2 \times 10^{-3}$eV2
Decay Volume

3NBT (BT bet. 3GeV&MLF) constructed in 2005

Construction Started in 2004

6m thick concrete structure

Cross section: 2.2m(W)x2.8m(H) 3.0m(W)x4.6m(H)

Target Station

Decay Volume ~110m

Dump

- Cover Off Axis angle: 2°~3°
- Square box shape made with water cooled iron plates (T<60°C at 4MW)
- Filled by 1atm Helium gas
Detectors

- **Muon monitors @ ~140m**
 - Behind the beam dump
 - Fast (spill-by-spill) monitoring of beam direction/intensity

- **First Near detector “Neutrino monitor” @280m**
 - Neutrino direction/stability
 - Neutrino flux and spectrum

- **Second Near Detector @ ~2km**
 - Almost same E_ν spectrum as for SK
 - Absolute neutrino flux
 - Neutrino spectrum at near site
 - Precise estimation of background
 Not approved yet

- **Far detector @ 295km**
 - Super-Kamiokande (50kt)
 - Hyper-Kamiokande (~1Mt)
Concept of Near Neutrino Detector

- Off-axis (~2.5°)
 - ν_μ and ν_e neutrino fluxes and the spectra.
 - ν interaction study (CC-QE, non-QE, π^0,)
 - Kaon Contributions

- On-axis (0°)
 - Beam direction
 - Beam stability
 - (Spectrum)?

The detectors are being designed
Off-Axis Detector
Magnetised ND280m Detector
Current design of the on-axis detector

N-Grid
One module consists of scintillator plates sandwiched with iron plates

- Purposes of the on-axis detector
 - Monitor the neutrino beam direction
 - Monitor the neutrino beam profile
Design of the Near Detector Hall

Due to the tight budget, the size of the experimental hall is reduced to its limit.
Construction schedule

- Five years construction in 2004~2008
- Half of decay volume is under construction
- Detailed design for construction in this fis year
Arial View as of Jan. 2005
Decay Volume Construction viewed from the downstream
50-m decay pipe has been installed
Welding is going on
One quarter of the 50-GeV tunnel is completed
The wood where the ND280 will be constructed
Summary

- The J-PARC neutrino project is making good progress
 - 5 years construction (JFY2004~JFY2008)
 - Start physics in 2009
 - Try to discover θ_{13} and precise measurement of θ_{23}, Δm_{23}.

- International collaboration T2K was formed

- R&D in various components in the beam line and near detector is on-going

- Construction has started from Decay volume in May. 2004

- Civil engineering design will be completed soon
Appendix
(Not approved yet)