Nuclear Physics studied by Neutrino induced Coherent Pion Production

Yasuhiro SAKEMI Research Center for Nuclear Physics (RCNP) Osaka University

Motivation from the point of view of nuclear physics

Neutrino-Nucleus scattering

- **1.** Neutrino oscillations ~ Detector response
- 2. Hadron physics ~ Spin structure of nucleon
- 3. Input into Astrophysics ~ Core collapse supernovae , r-process nucleosynthesis
- 4. Nuclear physics ~ π , Δ propagation in the interior of nucleus

Physics motivation

New probe ~ neutrino Physics ~ search of nuclear interior , property of high density nuclear matter pion, Δ propagation in the nuclear medium ~ Chiral symmetry in nuclear physics

Nuclear force and short range correlation

- Nuclear force
 - short range correlation of the nuclear interaction

 \Rightarrow 1 π exchange + 1 ρ exchange + g' (short range: phenomenological parameter)

V/transverse

3

Vlongitudinal

2

Vπ

q(fm-1)

g'

1

0

$$V_{ph}^{longitudinal} = 4\pi f^{2} \left(g'_{NN} + \frac{k^{2}}{\omega^{2} - k^{2} - m_{\pi}^{2}} \right) (\sigma_{1} \cdot k) (\sigma_{2} \cdot k) \tau_{1} \cdot \tau_{2} \quad \mathbf{V}$$

$$V_{ph}^{transverse} = 4\pi f^{2} \left(g'_{NN} + \frac{f_{\rho}^{2}}{f^{2}} \cdot \frac{k^{2}}{\omega^{2} - k^{2} - m_{\pi}^{2}} \right) (\sigma_{1} \times k) (\sigma_{2} \times k) \tau_{1} \cdot \tau_{2}$$

- Critical Density of Pion Condensation
- Finite expectation value of pion in nuclei
- Landau-Migdal parameter $g' \sim g'_{NN}, g'_{N\Delta}, g'_{\Delta\Delta}$
- (N-h)(N-h), $(\Delta -h)(N-h)$, $(\Delta -h)(\Delta -h)$ residual interaction
- g'_{NN} , $g'_{N\Delta} \sim Gamow$ -Teller region, $g'_{N\Delta} \sim quasi-free \ scattering$
- $g'_{\Delta \Delta} \sim \Delta$ excitation region \rightarrow Coherent Pion Production (CPP)

Pion condensation phase in high density nuclear matter

Coherent Pion Production

 $A(p, n \pi^+)A(G.S.), A(\nu, \mu^- \pi^+)A(G.S.)$

Neutrino and Hadron Probes

Distortion effects

Present status

Hadron probe

•Sacray (3He,t π⁺)
•LAMPF (p,n π⁺)
•RCNP (p,n π⁺) (3He,t π⁺)

- ~ resolution : poor / shutdown
- ~ test experiment / shutdown
- ~ in progress

Neutrino ~ J-PARC ! $A(\nu, \mu^{-} \pi^{+})A^{*}$ \rightarrow what should be considered •resolution •yield •.....

Coherent Pion Production at RCNP

Experiment

- Beam ~ proton 400MeV un-polarized
- Target ~ ${}^{12}C (100mg/cm^2)$
- True Event 100nA $\rightarrow \sim 0.15$ cps
- Observables
 - pion energy and angle
 - position counter (developed newly)
 - neutron energy
 - Neutron Counter NTOF
 - ↓ coincidence
 - missing mass spectra
- Requirements
 - high spatial and angle resolution
 - Dx < 100 mm
 - Dq < 1 mrad
 - counting rate ~ 100kcps
 - High magnetic field ~ 0.5 T
 - space boundary
- GEM detector

- hardware
- DAQ system
- Specification
 - high speed data transfer

Experimental status

- Hardware
 - Trigger scintillator with WLS fiber
 - *GEM detector ~ prototype*
- Experiment and analysis Status
 - Beam: proton (392MeV, <30nA)
 - *Target:* ¹²*C* (113mg/cm²)
 - Event rate: 2kcps(p + n event)
 - proton background ~ not separated clearly
 - *True/B.G.* < 1/60
- Improvements
 - TOF & shield
 - longer path length
 - shielding around the beam-line
 - tracking detector
 - precise b information
 - reconstruction with high position resolution

TOF spectrum of pion counter

ADC histogram

Feasibility check ~ this year Data production run ~ this year/next year

Neutrino induced CPP

E=1 GeV $\rightarrow \Delta$ resonance region ~ π , Δ propagation in the interior of nucleus

	ν_{μ}	$\overline{\nu_{\mu}}$	$\nu_c + \overline{\nu_c}$
ν interaction type	10 ²⁰ POT	10 ²⁰ POT	10 ²⁰ POT
	1 ton	1 ton	1 ton
CC QE, $\nu_{\mu}n \rightarrow \mu^{-}p$	11,395	184	56
NC EL, $\nu_{\mu} N \rightarrow \nu_{\mu} N$	4,993	86	22
CC π^+ , $\nu_{\mu}p \rightarrow \mu^- p \pi^+$	3,293	24	24
CC π^0 , $\nu_\mu n \rightarrow \mu^- p \pi^0$	725	11	6
CC π^+ , $\nu_{\mu} n \rightarrow \mu^- n \pi^+$	646	10	6
NC π^0 , $\nu_\mu p \rightarrow \nu_\mu p \pi^0$	606	10	5
NC π^+ , $\nu_\mu p \rightarrow \nu_\mu n \pi^+$	370	6	3
NC π^0 , $\nu_\mu n \rightarrow \nu_\mu n \pi^0$	454	8	3
NC π^- , $\nu_\mu n \rightarrow \nu_\mu p \pi^-$	290	5	2
CC DIS, $\nu_{\mu} N \rightarrow \mu^{-} X$	176	0	1
NC DIS, $\nu_{\mu} N \rightarrow \nu_{\mu} X$	64	0	0
CC coh π^+ , $\nu_{\mu}A \rightarrow \mu^-A\pi^+$	539	22	3
NC coh π^0 , $\nu_\mu A \rightarrow \nu_\mu A \pi^0$	349	14	2
other	464	14	1
total	24,364	394	134

Table 3.1: Number of events expected at 50 m with a 25 m decay length for 1×10^{20} POT per ton detector. These predictions do not include final state effects and assume 100% detection/reconstruction efficiency.

Predicted response function

Int. J. of Mod. Phys. E10(2001) 459

Critical density of pion condensation

Pion distribution in nuclei

Nuclear structure ~ pion distribution Surface pion condensation ~ finite expectation value of pions in the nuclear surface !

Pions in nuclei

Volume type or Surface type distribution ?

Intrinsic energy of ¹²C as a function of pion number expectation [1].

[1] A. Onishi et al., arXiv:nucl-th/0407085

Search for 0⁻ state with Polarized ³He Beam

Motivation

- 1. $J^{P}=0^{-}$ excitations : carry the simple Pion-like quantum number \Rightarrow will have a pion correlation in the nucleus
- 2. 0^{-} state is not clearly separated \Rightarrow poor data, limited
- 3. (p,n) data by Orihara et al. ~ low incident energy \Rightarrow large difference between data and DWBA at large q ~ signature of pionic field ?

Physics Goal

- 1. 0⁻ states search with high resolution charge exchange reaction (³He,t) and (⁶Li,⁶He)
- 2. Polarized beam ~ Powerful tool to identify 0⁻ states with spin observables
- 3. Pion correlation in the nucleus

Spin Observables = Tool for 0- state Search/Identification

- 1. Spin transfer
- 2. High resolution charge exchange reaction

"0(p.n)"F(0")

(p,n) data

Microscopic structure of Gamow-Teller states

Motivation :

- 1. Microscopic structure of Gamow-Teller States ~ observed in high resolution (³He,t) : Can not explain with usual shell model
- 2. Parity mixing state due to pion field in the nuclear medium ~ possible explanation ?
- Physics Goal :
- 1. Determine the pion response (contribution) to Gamow-Teller states \Rightarrow obtain the information on parity mixing state
- 2. Pion distribution in nucleus ~ Surface pion condensation

•Neutrino probe ~ can penetrate interior of nucleus ~ volume type

•Hadron probe ~ sensitive to surface

What should be done next

- g' $_{\Delta \Delta}$ ~ measurement accuracy
- pions in nuclei ~ theoretical calculation ~ what should be observed
- •Neutrino beam ~ Coherent Pion Production ~ separation difficult
 - \rightarrow measured observables and extracted physics
- •MC preparation ~ physics/detector study
- •Required specification for the detector
- •Detector design

Nuclear physics with Neutrino Beam

•New probe ~ Neutrino at J-PARC

✓ Coherent Pion Production

✓ Interior of nucleus ~ Spin response function

• Short range correlation of nuclear force g' ~ phase transition of nuclear matter

• Pions in Nuclei

•Natural extension of Spin-Isospin Physics at RCNP

•Physics discussion, Detector design