Study for the Neutrino Coherent Pion Production Experiment

Yasuhiro SAKEMI Research Center for Nuclear Physics (RCNP) Osaka University

Contents

- Phycis motivation
- Coherent Pion Production
- Proton induced CPP
- Neutrino beam at J-PARC
- Summary

Phase Transition in Nuclear Matter

Physics motivation

Nuclear force and Pion condensation

Coherent Pion Production

A(
$$\nu, \mu^{-}\pi^{+}$$
)A(Ground State) \Rightarrow Nuclear Force $\sim g'_{\square}$

 $\omega_{\rm L}$ (MeV)

Electron/Photon induced CPP

Suggested by Prof. M. Sakuda

 $R_T \propto |\langle n | \sigma \times \mathbf{q} | \mathbf{0} \rangle|^2$

• Quenching and Hardening

Can extract Longitudinal response strength by reducing the Transverse component measured by e/γ induced CPP

Neutrino induced CPP

•Strength \Rightarrow Precursor of pion condensation

Coherent Pion Production at RCNP

 $g'_{DD} \sim extract$ from Coherent Pion Production

 $\mathbf{p} + \mathbf{A} \rightarrow \mathbf{n} + \pi^+ + \mathbf{A}$ (g.s.)

- 1. Peak shift from N-D residual interaction
 - $\Delta E \approx g'_{\Delta \Delta} (\hbar c f_{pND} / m_p^2) = 0$
- 2. Longitudinal response function (R_L) ~ dominant at 0 degree
 - $\mathbf{S}_{cpp}(0^{\circ}) \rightarrow \mathbf{R}_{L} \rightarrow g'(g'_{NN}, g'_{ND}, g'_{DD})$

CPP status

- Saclay ${}^{12}C(3\text{He,t}\,\pi^+){}^{12}C(G.S.)$ ~resolution poor/shutdown
- > LAMPF ${}^{12}C(p,n\pi^+){}^{12}C(G.S.)$ ~ test experiment / shutdown
- > RCNP ${}^{12}C(p,n\pi^+){}^{12}C(G.S.)$ ~ in progress

Experiment

- Beam ~ proton 400MeV un-polarized ∠E~100keV
- Target ~ ${}^{12}C (100mg/cm^2)$
- Detector
 - Netron detector ~ $\angle E \sim 300 \text{ keV}$
 - π detector ~ $\Delta E \sim 1$ MeV
- Identification of CPP
 - select the ground state of residual nucleus

CPP Experiment

Neutron Counter

Neutrino induced CPP

Coherent Pion Production data ~ poor First data from K2K ~ GeV energy region ⇒ NO eveidence of CPP

Neutrino induced CPP

E=1 GeV $\rightarrow \Delta$ resonance region ~ π , Δ propagation in the interior of nucleus

LOI (AGS neutrino beam)

ν interaction type	$ \frac{\nu_{\mu}}{10^{20} \text{ POT}} $ 1 ton	$\frac{\overline{\nu_{\mu}}}{10^{20} \text{ POT}}$ 1 ton	$ \frac{\nu_e + \overline{\nu_e}}{10^{20} \text{ POT}} $ 1 ton
CC QE, $\nu_{\mu} n \rightarrow \mu^{-} p$	11,395	184	56
NC EL, $\nu_{\mu} N \rightarrow \nu_{\mu} N$	4,993	86	22
$\mathrm{CC}\ \pi^+,\ \nu_\mup\to\mu^-p\pi^+$	3,293	24	24
CC π^0 , $\nu_\mu n \rightarrow \mu^- p \pi^0$	725	11	6
$\mathrm{CC}\;\pi^+,\nu_\mun\to\mu^-n\pi^+$	646	10	6
NC π^0 , $\nu_\mu p \rightarrow \nu_\mu p \pi^0$	606	10	5
NC π^+ , $\nu_\mu p \rightarrow \nu_\mu n \pi^+$	370	6	3
NC π^0 , $\nu_\mu n \rightarrow \nu_\mu n \pi^0$	454	8	3
NC $\pi^-, \nu_\mu n \to \nu_\mu p \pi^-$	290	5	2
CC DIS, $\nu_{\mu} N \to \mu^- X$	176	0	1
NC DIS, $\nu_{\mu} N \rightarrow \nu_{\mu} X$	64	0	0
CC coh π^+ , $\nu_{\mu} A \rightarrow \mu^- A \pi^+$	539	22	3
NC coh π^0 , $\nu_\mu A \rightarrow \nu_\mu A \pi^0$	349	14	2
other	464	14	1
total	24,364	394	134

Table 3.1: Number of events expected at 50 m with a 25 m decay length for 1×10^{20} POT per ton detector. These predictions do not include final state effects and assume 100% detection/reconstruction efficiency.

