The MAJORANA DEMONSTRATOR: Ge for $0
\nu\beta\beta$ and Dark Matter

Matthew P. Green
University of North Carolina – Chapel Hill
For the Majorana Collaboration
Germanium for $0\nu\beta\beta$

- ^{76}Ge is an excellent candidate $0\nu\beta\beta$ source:
 - Ge detectors are a proven technology
 - Excellent energy resolution: 0.16% at 2039keV
 - Favorable Nuclear Matrix Element
 - Demonstrated background rejection techniques:
 - Granularity
 - Pulse-shape discrimination

- P-Type Point Contact detectors (PPCs)
 - Low-noise -> sub-keV energy thresholds
 - Excellent timing discrimination
$0\nu\beta\beta$ sensitivity

![Graph showing $0\nu\beta\beta$ sensitivity](chart.png)

- Inverted Hierarchy ($m_1 \rightarrow 0$ eV)
- Zero background
- 0.1 counts/ROI/t/y
- 1 count/ROI/t/y
- 4 counts/ROI/t/y

Mod. Phys. Lett. A 24 (2006), p. 1547 (3α): $(1.30-3.55) \times 10^{25}$ years
MAJORANA DEMONSTRATOR R&D

Goals

• Technical goals:
 – Demonstrate backgrounds low enough to justify building a tonne-scale Ge experiment.
 – Establish feasibility to construct & field modular arrays of Ge detectors.
 – Minimize costs, optimize the schedule, and retire risks for a future 1-tonne experiment.

• Science goals:
 – Although we are driven by technical goals, we also aim to extract the maximum science from the DEMONSTRATOR prototype,
 • (Directly) Test the recent claim of an observation of $0\nu\beta\beta$ in 76Ge.
 • Exploit the low-energy sensitivity to perform searches for dark matter, axions.
 – Work cooperatively with GERDA Collaboration toward a single international tonne-scale Ge experiment that combines the best features of MAJORANA and GERDA.
The MAJORANA DEMONSTRATOR

- Background Goal in the $0 \nu \beta \beta$ peak region of interest (4 keV at 2039 keV)
 - 3 counts/ROI/t/y (after analysis cuts)
 - scales to 1 count/ROI/t/y for a tonne experiment
- 40-kg of Ge detectors
 - Baseline: 20-kg of 86% enriched ^{76}Ge crystals & 20-kg of $^{\text{nat}}\text{Ge}$ (up to 30-kg enriched ^{76}Ge)
 - Detector Technology: P-type, point-contact.
- 2 independent cryostats
 - ultra-clean, electroformed Cu
 - 20 kg of detectors per cryostat
 - naturally scalable
- Compact Shield
 - low-background passive Cu and Pb shield with active muon veto
- Located underground at 4850’ Sanford Lab
The MAJORANA DEMONSTRATOR

2012 - Prototype Cryostat (3 strings, natGe)
2013 - Cryostat 1 (3 strings enrGe & 4 strings natGe)
2014 - Cryostat 2 (up to 7 strings enrGe)
MJD Detector Arrays

- Ge detectors mounted in custom, low-mass mounts, fabricated from EFCu, PTFE
- Mounts compatible with range of detector form factors
- Detector units stacked in strings. Strings mechanically rigid; good thermal conductivity
PPCs: Timing Capabilities

PPCs: Low-Energy Performance

- Point-contact reduces detector capacitance.
- PPCs capable of sub-keV energy thresholds.
- This presents an interesting opportunity for an array of PPC-type Ge detectors...

![Graph](Image)
Sensitivity of PPCs to WIMPs

M.G. Marino, Ph.D. Disseration, Univ. of Washington (2010)
MAJORANA DEMONSTRATOR in the Dark Matter Picture

- PPC detectors provide a unique opportunity to probe an open region of WIMP detection space!

- Assumptions:
 - 20kg of detectors
 - Spin-independent WIMPS
 - ^3H: 15 days surface exposure
 - 0-10keV: .001 cnts/kg/keV/day
 - $n: << ^3\text{H}$, based on IGEX

Xenon 100: arxiv:1104.2549v2
Dark Matter with PPCs: MALBEK

- MAJORANA Low-Background BEGe at KURF
- PPC detector
- Low-background cryostat
- Layered shielding
 - 1” ancient lead
 - 8” low-background lead
 - 2” plastic scintillator μ veto
 - 10” polyethylene
- Testbed for MAJORANA detector electronics, DAQ, simulations.
Rise Time Cuts: Removing Degraded Pulses

![Graph showing different time cuts for 68Ga, 68Ge, and 65Zn with RT < 500 ns, RT < 1500 ns, and RT < 2500 ns.]
Producing $^{\text{enr}}$Ge Detectors

- MAJORANA received first shipment of $^{\text{enr}}$Ge Sept. 2011.
- 28.5kg GeO$_2$ enriched at ECP, Krasnoyarsk, Russia (~20kg 76Ge)
- Stored underground at Cherokee Caverns, Knoxville TN

Matthew Green - NDM12 Nara, Japan

June 11, 2012
Ge Detector Production

- Reduction & Refinement
 - ESI, Oak Ridge, TN (SBIR)
- Crystal-pulling, machining, contact deposition
 - Commercial vendor selected.
- 19 commercial \(^{nat}\)Ge detectors already on hand at SUL
MJD Lab @ SURF
Background Simulations

- MaGe: a GEANT4-based application jointly developed by MAJORANA / Gerda
 - Geometries
 - Physics lists
 - Identical output to DAQ-unified analysis code
- MaGe is well-validated
 - MALBEK full background spectrum modeled accurately
 - Extensive suite of validation tests to ensure GEANT4 accuracy in $0\nu\beta\beta$ & light WIMP regimes

June 11, 2012
Matthew Green - NDM12 Nara, Japan
Background Simulations
Background Simulations

- Full-spectrum background model:
 - Uranium / Thorium decay chains
 - 40K / 60Co / 68Ge
 - α / β emitting surface contaminants
 - Neutron backgrounds
- Engineering design support
 - Shielding / veto efficiencies
 - Materials qualifications
 - Calibration system design
- Estimation of effectiveness of analysis cuts
- \sim60k CPU hrs, 15Tb data on NERSC clusters
Material Assay

<table>
<thead>
<tr>
<th>Material</th>
<th>Uses</th>
<th>Contaminant Goals</th>
<th>Equivalent Achieved Assay</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germanium</td>
<td>Detectors</td>
<td><100 days 68Ge exp.</td>
<td>N/A</td>
<td>[Avi92],</td>
</tr>
<tr>
<td></td>
<td></td>
<td><30 days 60Co exp.</td>
<td></td>
<td>[Ell10]</td>
</tr>
<tr>
<td></td>
<td></td>
<td><14 nBq/kg U/Th</td>
<td><14 nBq/kg</td>
<td>[Det08b]</td>
</tr>
<tr>
<td></td>
<td></td>
<td><0.5 μ Bq/cm2 surf. α</td>
<td><0.5 μ Bq/cm2</td>
<td></td>
</tr>
<tr>
<td>Electroformed Copper</td>
<td>Detector Mounts, Cryostat</td>
<td><0.1 μ Bq/kg 208Tl</td>
<td>0.2 ± 0.1 μ Bq/kg</td>
<td>[Hop09],</td>
</tr>
<tr>
<td></td>
<td>Inner Cu Shield</td>
<td><0.3 μ Bq/kg 214Bi</td>
<td><1.3 μ Bq/kg rej. fac. ≤100</td>
<td>[Hop11]</td>
</tr>
<tr>
<td></td>
<td></td>
<td><20 μ Bq/kg 60Co</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercial Copper</td>
<td>Outer Cu Shield</td>
<td><0.3 μ Bq/kg 208Tl</td>
<td>0.3 ± 0.1 μ Bq/kg</td>
<td>[Hop09],</td>
</tr>
<tr>
<td></td>
<td></td>
<td><3 μ Bq/kg 214Bi</td>
<td><36 μ Bq/kg <saturation</td>
<td>[Leo08]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≤saturation 60Co</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>Lead Shield</td>
<td><1 μ Bq/kg 208Tl</td>
<td><1 μ Bq/kg</td>
<td>[Leo08]</td>
</tr>
<tr>
<td></td>
<td></td>
<td><10 μ Bq/kg 214Bi</td>
<td><10 μ Bq/kg</td>
<td></td>
</tr>
<tr>
<td>Plastic</td>
<td>Detector Mounts, Insulation</td>
<td><0.4 μ Bq/kg 208Tl</td>
<td>36 ± 3 nBq/kg <10 μ Bq/kg</td>
<td>[Efro10],</td>
</tr>
<tr>
<td></td>
<td></td>
<td><10 μ Bq/kg 214Bi</td>
<td></td>
<td>[Leo08]</td>
</tr>
<tr>
<td>Small Components</td>
<td>Front-End Electronics,</td>
<td><6 nBq/chan. 208Tl</td>
<td><6 nBq/chan.</td>
<td>[Leo08],</td>
</tr>
<tr>
<td></td>
<td>Contacts</td>
<td><24 nBq/chan. 214Bi</td>
<td><24 nBq/chan.</td>
<td>[Loa10]</td>
</tr>
<tr>
<td>Cables</td>
<td>Signal, High-Voltage</td>
<td><40 μ Bq/kg 208Tl</td>
<td><40 μ Bq/kg</td>
<td>[Det08],</td>
</tr>
<tr>
<td></td>
<td></td>
<td><500 μ Bq/kg 214Bi</td>
<td><500 μ Bq/kg</td>
<td>[Loa10]</td>
</tr>
<tr>
<td>Polyethylene Shield</td>
<td>Neutron Modification</td>
<td>≥30 cm</td>
<td>N/A</td>
<td>[Bac08]</td>
</tr>
<tr>
<td>Rock</td>
<td>Overburden</td>
<td>≥4300 mwe</td>
<td>N/A</td>
<td>[Ste10]</td>
</tr>
</tbody>
</table>
Electroformed Cu

- Cryostats 1&2, their detector components, shielding to be fabricated from underground e-formed Cu
- Baths operational at SUL, PNNL shallow underground facility
- Electroforming process inherently high-purity
- Assays of produced Cu show < 1ppt U238
- 75 μm/day growth rate
Cryostat and Component Fabrication

- Underground cleanroom machine shop being installed in MJD lab
- Most copper components will have no surface exposure
- Only clean, water-soluble lubricant
- All components acid-etched, surface-passivated
- Parts-tracking DB in use
Glovebox Assembly

Detectors handled in Rn-mitigated glovebox.
The Prototype Cryostat

- Commercial Cu Cryostat
- Test of fabrication and assembly techniques / procedures
- Test of mechanical design
Vacuum & Cryogenic Systems

- Remotely-operated UHV vacuum system
- Prototype Cryostat vacuum system commissioning underway
- Thermosyphon system for detector array cooling
- Prototype Cryostat Thermosyphon fabricated and ready for integration with vacuum system
Passive Shielding: Copper

- 5cm ultra-pure EFCu inner shield
- 5cm low-background commercial copper outer shield
- Design complete, fabrication begun.
- Inner shield EFCu in production
Passive Shielding: Lead

- 45cm Pb shielding
- 3500 5cm x 10cm x 20cm bricks purchased from Sullivan Lead, virgin Doe Run Source
- ~3000 bricks donated from University of Washington
- Cleaning facilities constructed
- Stacking pattern designed
Active Muon Veto

• Near-complete 4π coverage
• Monte Carlo studies: >99% efficiency
• Scintillator parts being procured

June 11, 2012
Potential DEMONSTRATOR Physics Reach

• The Demonstrator is an ultra-low background, low-threshold, high-resolution detector.
• Possible searches for new physics include:
 – $0\nu\beta\beta$
 – Dark Matter WIMPs
 – Axions
 – Sterile neutrinos
 – Pauli Exclusion Principle violation, other exotic things
Toward Tonne-Scale

- Utilizes and builds on major R&D activities of GERDA and MAJORANA Collaborations.
- Pursuing a range of shield designs between the compact and the GERDA-like. Ultimate design will be based on results from GERDA Phases I & II and the MAJORANA DEMONSTRATOR.
- Should have preliminary information from both GERDA Phase II and MJD Cryo 1, aim to reach agreement on the down-select process during 2014.
- Various site options:
 - SNOLAB 6800L
 - China Jinping Underground Laboratory 8240’
 - Homestake 4850L - compact shield looks very risky based on current knowledge of background requirements. LAr also faces risks.
Summary

- The MAJORANA DEMONSTRATOR will probe $0\nu\beta\beta$ and dark matter with an ultra-low background detector.

- Phased deployment over the next 3 years, with data from enriched detectors as soon as 2013.

- The MAJORANA & Gerda Collaborations will combine efforts on a tonne-scale $0\nu\beta\beta$ experiment that will have the sensitivity to probe $0\nu\beta\beta$ lifetimes in $^{76}\text{Ge} \sim 10^{27}$-$10^{28}$ years.
The MAJORANA Collaboration

Pacific Northwest National Laboratory, Richland, Washington
Craig Aalseth, Estanislao Aguayo, Jim Fast, Eric Hopper, Todd Hossbach, Marty Keillor, Jeremy Kephart, Richard T. KoZZes, Brian LaFemina, Jason Merriman, Harry Miley, John Orrell, Nicole OvCerrman, Doug Reid

Queen's University, Kingston, Ontario
Art McDonald

South Dakota School of Mines and Technology, Rapid City, South Dakota
Gabot-Ann Christofferson, Mark Horton, Benjamin Orman

University of Alberta, Edmonton, Alberta
Kenneth Hailin

University of Chicago, Chicago, Illinois
Juan Collar, Nicolas Fields

University of North Carolina, Chapel Hill, North Carolina and TUNL

University of South Carolina, Columbia, South Carolina
Frank Ahn, Karen Leiki Mizusawa

University of South Carolina, Charleston, South Carolina
Vince Giuseppe, Travis Miller, Kenneth Thomas, Dan O'Sullivan, and Patricia Chai, 2012

University of Tennessee, Knoxville, Tennessee

University of Washington, Seattle, Washington

The University of Chicago, Chicago, Illinois

Los Alamos National Laboratory, Los Alamos, New Mexico
Melissa Boswell, Carina Tassotti, Victor Nagy, Ewen Andonian, Byron Todd, Zachary Clark, Mitchell Franklin, Randy Honeycutt, Matthew Kershner, Harv Lang, and Steve Spizzirri

North Carolina State University, Raleigh, North Carolina, and TUNL
Dustin Combs, Tance Levinin, Alisa Young

Oak Ridge National Laboratory, Oak Ridge, Tennessee
Fred Bertrand, Greg Chen, Ken Cooper, Kim Eskije, David Goldman, Paul Hearty, and Christian Tu

Osaka University, Osaka, Japan
Hiroyuki Ishii, Ryota Izumihara, Masahiro Karimoto, Shin-ya Takagi

June 11, 2012

Red text indicates students

Matthew Green - NDMA12 Naka, Japan