Flow of rp process around ⁵⁶Ni reaction rates for the ⁵⁶Ni(p,γ)⁵⁷Cu, ⁵⁷Cu(p,γ)⁵⁸Zn, (⁵⁶Ni(n,p)⁵⁶Co, ⁶⁴Ge(n,p)⁶⁴Ga) reactions

Naohito Iwasa Department of Physics, Tohoku Univ.

Heavier elements than Fe

Arnould 2003

• heavier elements than Fe

s process

r procrss

(n, γ) & β^{-}

Arnould, Goriely, Phys.Rep. 384,1 Fig.3

• p nuclides (stable)

× s process

s,r process+ γ process proton rich region: $S_p > S_n$ large abundance of ^{92,94}Mo and ^{96,98}Ru cannot be explained

rp process

Schatz et al

Proton-rich region $(p,\gamma) \& \beta^+(EC)$

Nova, Xray bursts 0.4GK: A<110 Super Nova 1-3GK: up to ⁶⁴Ge

waiting points
 (⁵⁶Ni),⁶⁴Ge, ⁶⁸Se, ⁷²Kr...
 long life time
 negative or small Q value
 for (p,γ)

Phys. Rev. Lett. 86 (2001) 3471

rp process

⁵⁶Ni \rightarrow ⁵⁷Cu reaction rate ⁵⁶Ni : $T_{1/2} = 6$ days $Q_{(p,\gamma)} = 0.7$ MeV

⁵⁶Ni: double magic

⁶⁴Ge→⁶⁵As reaction rate ⁶⁴Ge : $T_{1/2} = 64$ s $Q_{(p,γ)} = 0.18$ MeV

supernova:stop at ⁶⁴Ge→⁶⁴Zn X ray bursts etc.: up to A=110

vp process

 $p + \overline{\nu}_e \rightarrow n + e^+$

⁵⁶Ni + $n \rightarrow$ ⁵⁶Co + p

$$^{64}\text{Ge} + n \rightarrow ^{64}\text{Ga} + p$$

Problem on overabundance of P nuclides may be solved

Experimental determination of reaction rates

 \rightarrow precise predictions of p nuclides

Reactions with smaller reaction rates determines reaction rate of the process ${}^{56}\text{Ni}(p,\gamma){}^{57}\text{Cu}, ({}^{57}\text{Cu}(p,\gamma){}^{58}\text{Zn},) {}^{56}\text{Ni}(n,p){}^{56}\text{Co}, {}^{64}\text{Ge}(n,p){}^{64}\text{Ga}, {}^{68}\text{Se}(n,p), {}^{72}\text{Kr}...$

$56Ni(p,\gamma)57Cu^{S_p=0.695(19),T_{1/2}=196ms}$

DC component is negligible

• ${}^{1}\text{H}({}^{58}\text{Ni},{}^{57}\text{Cu}\gamma)$: Zhou

excited states (1.028, 1.106, 2.398 MeV)

- Γ_{γ} are not determined.
- ${}^{2}\text{H}({}^{56}\text{Ni},p){}^{57}\text{Ni}$: Rehm

Zhou et al., Phys. Rev. C53, 982 Fig.2

$56Ni(p,\gamma)^{57}Cu^{S_p=0.695(19),T_{1/2}=196ms}$

DC component is negligible

- ¹H(⁵⁸Ni,⁵⁷Cu γ): Zhou excited states (1.028, 1.106, 2.398 MeV) Γ_γ are not determined.
- ²H(⁵⁶Ni,p)⁵⁷Ni: Rehm C²S of ⁵⁷Ni same C²S was used for ⁵⁷Cu assuming the charge symmetry. C²S(5/2⁻)= 0.91 C²S(1/2⁻)= 0.90

Rhem et al., Phys. Rev. Lett. 80,676 Fig.2

Rhem et al.,Phys.Rev.Lett. 80,676 Fig.3 → 1.028

Rhem et al., Phys. Rev. Lett. 80,676 Fig.1

→ 1.106

$56Ni(p,\gamma)^{57}Cu^{S_p=0.695(19),T_{1/2}=196ms}$

DC component is negligible

- ¹H(⁵⁸Ni,⁵⁷Cu γ): Zhou excited states (1.028, 1.106, 2.398 MeV) Γ_γ are not determined.
- ²H(⁵⁶Ni,p)⁵⁷Ni: Rehm
 C²S of ⁵⁷Ni
 same C²S was used for ⁵⁷Cu assuming
 the charge symmetry.
 More reliable determination is necessary

Rhem et al., Phys.Rev.Lett. 80,676 Fig.4

Rhem et al., Phys. Rev. Lett. 80,676 Table 1

⁵⁷Cu(p,γ)⁵⁸Zn

FORSTNER, HERNDL, OBERHUMMER. SCHATZ. AND BROWN PHYSICAL REVIEW C 64 045801

No experimental data

- Forstner, Phys. Rev. C64, 045801, 2001
- Experimental determination of E_{x} , Γ_{p} and Γ_{γ} is necessary.

Forstner, Phys. Rev. C64, 045801 Table 5

Forstner, Phys. Rev. **C64**, 045801 Fig. 3

Coulomb dissociation method

• The Coulomb dissociation method is powerful tool to deduce radiative capture cross sections relevant to nuclear astrophysics.

Coulomb dissociation studies on (p,γ) reactions

Alternative method ?

Experimental setup in RIBF

We are planning to perform measurements of reactions in the rp and r processes in RIBF.

• rp process (γ,p)

⁵⁷Cu(p,γ)⁵⁸Zn

The reaction rate will be determined from an experiment of the Coulomb dissociation of ⁵⁸Zn.

Forstner, Phys. Rev. **C64**, 045801 Fig. 3

⁵⁶Ni(p,γ)⁵⁷Cu

Rehm et al., Phys. Rev. Lett. 80, 676, 1998

Rhem et al., Phys. Rev. Lett. 80,676 Table 1

g.s. 3/2-

1.028 and 1.106 MeV states Γ_p << Γ_γ
Γ_p<<Γ_γ: CD ×
2.398 MeV states: M1/E2 mixture → CD angular distribution → M1/E2 ratio ? branching ratio
2.520 MeV states: E2 → CD

Reaction rate for T>1.2GK can be determined.

For T<1.1GK, ?

Rhem et al., Phys. Rev. Lett. 80,676 Fig.4

To determine Γ_p from experiments

• $\Gamma_p \ll 1 \text{ eV}$: Transfer reaction

 $\Gamma_p = C^2 S \Gamma_p^{SP}$

S: determined from experiments

 \rightarrow stripping reaction

•(d,n) in reverse kinematics energy and scattering angle of neutron should be measured, precisely to select ex. states. thermal neutron? scattering ? efficiency?

Rehm et al. ${}^{56}Ni+d \rightarrow {}^{57}Cu+n \times \rightarrow {}^{57}Ni+p O$ • ${}^{56}\text{Ni+d} \rightarrow {}^{57}\text{Cu+n+\gamma} \text{ at } \sim 50 \text{AMeV}$

Rehm ⁵⁶Ni+d→⁵⁷Ni*+p 8AMeV σ_{tot} ~20mb →⁵⁷Cu+n+ γ at 40AMeV assuming 1mb ? 5mm Liq. (Sol.) D₂ target (energy deposit: 17AMeV) beam 100 cps, gamma eff.~20% ⁵⁷Cu eff.~80% → 35 counts/day?

Separation of the 1.028 and 1.106 MeV state ? feeding from higher excited states?

(³He,d) reaction in reverse kinematics

(³He,d) reaction • Iliadis and Wiescher, PRC69, 064305 (2004)

 $\frac{d\sigma}{d\Omega} = N \frac{2J_f + 1}{2J_i + 1} \frac{1}{2j + 1} C^2 S \frac{d\sigma^{\text{DWBA}}}{d\Omega}$

N = 4.42 for (³He,d) by P.D. Kunz $\sigma^{DWBA} \sim 10 \text{mb} @5 \text{ A MeV}$

Hale et al. PRC70, 045802(2004) ²³Na(³He,d)²⁴Mg \rightarrow (p, γ), (p, α)

- ${}^{3}\text{He}({}^{56}\text{Ni},d{}^{57}\text{Cu}) \rightarrow {}^{56}\text{Ni}(p,\gamma){}^{57}\text{Cu}$ 1028, 1106 keV states $\Gamma_{\rm p} << \Gamma_{\gamma}$ $C^2S \sim 0.9$ estimated by Rehm

Reverse kinematics & RI?

A example of experimental setup

To determine the (n,p) cross section

• ⁵⁶Ni(n,p),⁶⁴Ge(n,p), ⁶⁸Se(n,p), ⁷²Kr(n,p) reactions are of crucial importance to determine reaction rate of the vp process

- Determination with the direct method is impossible because both ⁵⁶Ni, ⁶⁴Ge and neutron are not stable (radioactive).
- Beta decay:

 $\sigma_{(n,p)}(0) \propto B(GT), B(F)$

•Alternative method is desired to determine the (n,p) cross section.

 \rightarrow To study *B*(GT), (d,2p) reactions in reversed kinematics.

(d,2p) reaction in reverse kinematics

A example of experimental setup

collaboration with S. Ota's group detectors for 2 proton will be discussed ⁵⁶Ni ⁶⁴Ge

⁶⁸Se

⁷²Kr

Problem: charge states of Co, Ga, As, Br

まとめ

- ⁵⁶Ni(p,γ)⁵⁷Cu、⁵⁷Cu(p,γ)⁵⁸Zn 反応率の実験的導出 クーロン励起(分解)反応:強力な道具 (Γ_p>>Γ_γ, Γ_p~Γ_γ:SN) reaction rate, branching ratio Γ_p<<Γ_γ (nova): 逆運動学の(³He,d)反応 6AMeV,10⁴cps以上の⁵⁶Niビーム→実験可能
- ⁵⁶Ni(n,p)⁵⁶Co, ⁶⁴Ge(n,p)⁶⁴Ga, ⁶⁸Se(n,p)⁶⁸As
 逆運動学の(d,²He)? (t,³He)?
 charge state 問題
 ²Heが標的中に停止→薄い標的
 (t,³He): 放射性同位体標的、(t,pd)(t,n2p)と分離可能か?