多核子移行反応によるr-過程A=195ピーク 滞留核領域の原子核・天体核研究

2009.7.28 宇核連WS H.M. for RNB group, KEK

- How are the elements of Gold and Platinum synthesized –

- Nuclear Physics Approach -

B²FH&Cameron (1957!!);

Peak abundance around platinum and gold (A~195) in the astronomical observation

H. Grawe et al., Rept. Prog. Phys. 70(2007)1525.

Nuclear physics origin of the A=195 peak

Decay scheme, mass of waiting nuclei: At first, LIFE-TIME $(T_{1/2})$

• confirmation of the (n, γ)-(γ , n) equilibrium:

 $Y_{r, prog} / T_{1/2}$ (waiting) ~ const. \leftarrow \rightarrow determination r-process path

- minimum duration time to form the 3rd peak:
 - ~ $\Sigma T_{1/2}$ (waiting)
- determination astrophysical circumstance:
 - $N_n T_9$ correlation
- freeze-out conditions: T_9 and N_n
- sensitive test for mass-flow toward U, Th element synthesis

How to reach the "Blank spot" ?

Multi-Nucleon Transfer (MNT) reaction

rather large cross sections (~1 mb) for the stripping channel of 6p
pickup channels up to 6n for the pure neutron transfer channel (0p)

→ experimental evaluation for ¹³⁶Xe+¹⁹⁸Pt

MNT reactions of ^{136,144}Xe + ¹⁹⁸Pt

excitation functions for the production of N=126 isotones

Estimated yields

proton-induced fission of U at the total fission rates of 10¹⁴ Hz.

<u>isotope</u>	<u>beam intensity</u>
137 Xe	2.2×10 ¹⁰ pps
138 Xe	1.8×10 ¹⁰ pps
¹³⁹ Xe	1.0×10 ¹⁰ pps
140 Xe	4.2×10 ⁹ pps
141 Xe	1.3×10 ⁹ pps
142 Xe	2.7×10 ⁸ pps
¹⁴³ Xe	4.2×10 ⁷ pps
¹⁴⁴ Xe	4.7×10 ⁶ pps
¹⁴⁵ Xe	3.8×10 ⁵ pps
¹⁴⁶ Xe	1.8×10 ⁴ pps

RNB ¹⁴⁰Xe is superior to other nuclei for the investigation of the 3rd peak waiting nuclei. Stable ¹³⁶Xe is the second best choice for A > 198.

Characterization of the A=195 peak

LIFE-TIME (T_{1/2}) of waiting nuclei: ultimate goal of physics motivation

• actual r-process path,

■ $λ_{GT} > λ_{1st}$ (GT dom.)

 $\lambda_{GT} < \lambda_{1st}$ (1st dom.)

80

Ν 60

Proton number

40

20

20

40

60

- duration time passing through waiting nuclei
- astrophysical $N_n T$ condition,

First forbidden β-transitions will compete to the allowed transitions according to the shell evolution

Laser resonance ionization

A possible site for installing the KEK GC-LISOL

Summary of experimental proposal

Find out dominant decay mode and shell evolution in the vicinity of waiting nuclei through the lifetime measurements of nuclei in the "Blank spot" in the experimental proposal during five years

- · MNT reactions of Xe beams of stable isotope (^{136}Xe)
- · A sensitive test and an important opportunity for improvement of the lifetime predictions
- · A new method for decay spectroscopy of MNT fragments
- · Optimum energy and intensity of ^{140, 144}Xe beam for future's MNT reactions

For ultimate goal of the physics project

- as a natural extension of TRIAC: Next-TRIAC -

Thank you !! 梶野さん、住吉さん、和南城さん、大槻さん、 西村さん、千葉さん、小浦さん、宇津野さん