# 原子核の電磁応答に見る核力の性質

# 中田 仁 (千葉大・理)

@ 宇核連workshop (Jul. 29, 2009)

- ★ E1 energy-weighted sum  $\mathcal{E}(\hat{\mathbf{a}})$  核力のnon-locality
- ★  $^{208}$ Pbのlow-energy M1分布に見る tensor forceの影響

#### I. Introduction

**原子核の電磁応答** ··· 核データとして重要(特にlow energy part) 総合的理解  $\rightarrow$  "全体像"? (e.g. 広いenergy領域でのstrength分布) ◆ transition operator — (ほぼ)clear
 ◆ 基底状態の波動関数 doubly-closed核 → (凡そ)分かっている
 ◆ 励起状態のenergy, 波動関数 ↔ (有効)核力

逆に,電磁応答から(有効)核力に関する情報が得られる?  $(\rightarrow \text{feedback} \rightarrow 電磁応答のより精密な記述へ)$ 

(有効)核力に基づく電磁応答の"全体像"への微視的 approach

 $\rightarrow$  self-consistent HF + RPA

## HF + RPA 計算

 $\hat{H} = \hat{K} + \hat{V}_N + \hat{V}_C - \hat{H}_{\rm cm}$  $\hat{K} = \sum_{i} \frac{\boldsymbol{p}_{i}^{2}}{2M}$  $\hat{V}_N$ : effective NN int. (central + LS + tensor,  $\rho$ -dep.)  $\rightarrow$  saturation, shell structure  $\hat{V}_C$ : Coulomb int. (including exchange terms exactly)  $\hat{H}_{c.m.}$ : c.m. Hamiltonian (1-+2-body terms)  $\Rightarrow \begin{cases} HF \rightarrow \overline{A} \in \mathbb{R}, \text{ s.p. orbits} \\ RPA \rightarrow 1p-1h \overline{D} \in \mathbb{R}, \overline{A} \in \mathbb{R}, \overline{$  $\cdots$  self-consistent !

数値計算 — Gaussian expansion methodを利用 Ref.: H.N. *et al.*, N.P.A in press; arXiv:0904.4285

#### II. E1 energy-weighted sum

However, non-locality in charge-exchange part of  $\hat{V}_N$ 

$$\rightarrow \Sigma_{1}^{(E1)} = (1 + \kappa) \Sigma_{\text{TRK}} \qquad \kappa = \frac{1}{2} \langle 0 | [\hat{\mathcal{T}}^{\dagger}, [\hat{V}_{N}, \hat{\mathcal{T}}]] | 0 \rangle / \Sigma_{\text{TRK}}$$

Note:  $H_{\text{c.m.}}$   $\begin{cases} 1-+2\text{-body terms} \rightarrow [\hat{\mathcal{T}}^{(E1)\dagger}, [\hat{H}_{\text{c.m.}}, \hat{\mathcal{T}}^{(E1)}]] = 0\\ 1-\text{body term only} \rightarrow \frac{1}{2}[\hat{\mathcal{T}}^{(E1)\dagger}, [\hat{H}^{(1)}_{\text{c.m.}}, \hat{\mathcal{T}}^{(E1)}]] = \frac{1}{A}\Sigma_{\text{TRK}} \end{cases}$ 

 $\kappa \mathcal{O}$  estimate?  $\rightarrow$  まず nuclear matter  $(A = \infty)$  saturation point 近傍で

$$\begin{split} \hat{H} &\approx E_{0} + \sum_{\boldsymbol{k}\sigma\tau} \varepsilon_{\boldsymbol{k}\sigma\tau} : a_{\boldsymbol{k}\sigma\tau}^{\dagger} a_{\boldsymbol{k}\sigma\tau} : + \hat{V}_{\text{res}} \\ &\varepsilon_{\boldsymbol{k}\sigma\tau} \equiv \frac{\delta \langle \hat{H} \rangle}{\delta n_{\tau\sigma}(\boldsymbol{k})} = \frac{\boldsymbol{k}^{2}}{2M} + \frac{\delta \langle \hat{V}_{N} \rangle}{\delta n_{\tau\sigma}(\boldsymbol{k})} \qquad (n_{\tau\sigma}(\boldsymbol{k}) : \text{ occ. prob.}) \\ &\hat{V}_{\text{res}} \equiv \frac{1}{2} \sum_{\boldsymbol{k}\sigma\tau\boldsymbol{k}'\sigma'\tau'} \frac{\delta^{2} \langle \hat{V}_{N} \rangle}{\delta n_{\tau\sigma}(\boldsymbol{k}) \delta n_{\tau'\sigma'}(\boldsymbol{k}')} : a_{\boldsymbol{k}\sigma\tau}^{\dagger} a_{\boldsymbol{k}'\sigma'\tau'}^{\dagger} a_{\boldsymbol{k}\sigma\tau} : \\ &\approx N_{0}^{-1} \Omega^{-1} \sum_{\ell} \left[ f_{\ell} + f_{\ell}'(\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2}) + g_{\ell}(\boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{2}) + g_{\ell}'(\boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{2})(\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2}) \right] \\ &\times P_{\ell}(\hat{\boldsymbol{k}}_{1} \cdot \hat{\boldsymbol{k}}_{2}) \end{split}$$

 $\cdots$  Landau-Migdal parameters

$$\frac{1}{2} \left\langle \left[ \hat{\mathcal{T}}^{(E1)\dagger}, \left[ \hat{V}_N, \hat{\mathcal{T}}^{(E1)} \right] \right] \right\rangle \quad \to \quad 1 + \kappa_{\infty} = \frac{M}{M_0^*} \left( 1 + \frac{1}{3} f_1' \right)$$

# $\kappa_{\infty}$ の"理論値"の比較 $\leftrightarrow$ 有効核力 $\hat{V}_N$ の性質 $\hat{V}_N \cdots$ $\begin{cases} SLy5 & : Skyrme int. の数ある parameter の1つ<br/>: Gogny int. の "standard" parameter<br/>M3Y-P5' : semi-realistic int. (G-matrix + modification)$

|                 |                   | $\mathbf{SLy5}$ | D1S    | <b>M3Y-P5</b> ′ | Exp.             |
|-----------------|-------------------|-----------------|--------|-----------------|------------------|
| $k_{ m F0}$     | $[{\rm fm}^{-1}]$ | 1.334           | 1.342  | 1.340           | 1.32 - 1.37      |
| $\mathcal{E}_0$ | [MeV]             | -15.98          | -16.01 | -16.14          | $\approx -16$    |
| $M_0^*/M$       |                   | 0.697           | 0.697  | 0.637           | 0.6 - 0.8        |
| $\kappa_\infty$ |                   | 0.250           | 0.660  | 0.884           | 後述               |
| $g_0$           |                   | 1.123           | 0.466  | 0.216           | $\lesssim 0.5$ ? |
| $g_0'$          |                   | -0.141          | 0.631  | 1.007           | 0.8 - 1.2        |

#### $\kappa$ の実験値? ← photoabsorption cross section $(\gamma, xn), etc.$

- $\bullet~{\rm GDR}$  well established
- GDR energy以下? ··· 核データとして重要
   GDRのLorentzian fit? PDR?
- GDR energy 以上 high energy tailの存在

 $(\rightarrow \text{ Lorentzian fit } l d \not \forall \not \land !)$ 



 $E_x \le m_\pi (\approx 140 \text{ MeV})$ の積分値  $\Rightarrow \kappa = 0.76 \pm 0.10$ (A-dep. weak)

> Ref.: A. Leprêtre *et al.*, N.P.A 367, 237 ('81)

有限核の $\kappa$  ( $\kappa_A$ ) ← HF + RPA



- $\Sigma_1^{(E1)} \leftrightarrow \mathbf{LM} \text{ parameter } f'_1 \cdots$  有効核力の持つnon-localityのcheck
- semi-realistic int. (e.g. M3Y-P5') promising

Note: 実験の解析に関する問題点

- higher multipoleの影響?  $\rightarrow$  rel. effect と cancel
- $m_{\pi}$ 以上のcomponents?
- finite qの影響? (Siegert's theorem?  $j_1(qr) \approx qr/3$ ?)

理論計算に関する問題点

- 2p-2h(以上)のcomponentの影響?
- effective int. (+ MEC *etc.*)  $\rightarrow$  effective *E*1 op. ?

(たぶん影響は小さい)

## III. M1 strength distribution in ${}^{208}Pb$

<sup>208</sup>Pbのlow energy M1 strength distributionの精密実験

Ref.: T. Shizuma et al., P.R.C 78, 061303(R) ('08)

- 1p-1h **励起**  $p: (0h_{11/2})^{-1}(0h_{9/2}), n: (0i_{13/2})^{-1}(0i_{11/2})$
- 歴史的経緯

"missing *M*1 problem" … 
$$\left[\sum B(M1)\right]_{exp.} \ll \left[\sum B(M1)\right]_{1p-1h}!$$
  

$$\Rightarrow \begin{cases} 
 より精密な測定 \rightarrow \left[\sum B(M1)\right]_{exp.} \land \\
 様々な効果の考慮 \rightarrow \left[\sum B(M1)\right]_{cal.} \land \\
 (\Rightarrow 90年頃にはほぼ解決? \Rightarrow 修正)
\end{cases}$$
理論的 approach

○ ~'90年以前: RPA + 2p-2h + *etc.* ←  $\hat{V}_N$ : LM + tensor, without self-consistency — tensor force が重要!

○ ~'80年以降: self-consistent RPA ← phenomenogical  $\hat{V}_N$ — LM parameter?, no tensor force

 $\circ$  now: self-consistent RPA with semi-realistic  $\hat{V}_N$ ?

• excitation energy



•  $\hat{\mathcal{T}}^{(M1)} \neq \hat{\mathcal{T}}^{(M1,\mathrm{br})}$  !

$$\hat{\mathcal{T}}^{(M1,\text{br})} = \sum_{i \in p} \left\{ g_{\ell,p} \, \hat{l}_i + g_{s,p} \, \hat{s}_i \right\} + \sum_{i \in n} \left\{ g_{\ell,n} \, \hat{l}_i + g_{s,n} \, \hat{s}_i \right\} \\
= \sum_i \left\{ g_{\ell,\text{IS}} \, \hat{l}_i + g_{s,\text{IS}} \, \hat{s}_i \right\} + \sum_i \left\{ g_{\ell,\text{IV}} \, \hat{l}_i + g_{s,\text{IV}} \, \hat{s}_i \right\} \tau_{z,i} \\
(\tau_z = +1 \text{ for } p, -1 \text{ for } n) \\
= 1 \left( \tau_z = 1 \text{ for } p, -1 \text{ for } n \right)$$

$$g_{\ell,\mathrm{IS}} \equiv \frac{1}{2}(g_{\ell,p} + g_{\ell,n}), \ g_{\ell,\mathrm{IV}} \equiv \frac{1}{2}(g_{\ell,p} - g_{\ell,n}); \ g_{s,\mathrm{IS}}, \ g_{s,\mathrm{IV}}$$
も同様

core polarization, meson exchange current,  $\Delta$ -*h*, *etc.* shell modelの立場からは1*p*-1*h*のCPが最も重要  $\rightarrow$  (HF+) RPAでは自然に入る

他の効果 → Townerのtableから引用 →  $\hat{T}^{(M1)}$ Ref.: I.S. Towner, P.Rep. 155, 263 ('87)

$$\rightarrow g_{\ell,\mathrm{IS}}^{\mathrm{eff}} \approx g_{s,\mathrm{IS}}^{\mathrm{eff}} \rightarrow \langle \alpha | \mathcal{T}_{\mathrm{IS}}^{(M1)} | 0 \rangle \approx g_{\ell,\mathrm{IS}}^{\mathrm{eff}} \langle \alpha | J | 0 \rangle = 0 \, !$$

$$\rightarrow \left| \langle \alpha | \hat{\mathcal{T}}^{(M1)} | 0 \rangle \right|^{2} \approx \left| \langle \alpha | \hat{\mathcal{T}}_{\mathrm{IV}}^{(M1)} | 0 \rangle \right|^{2}$$

$$\cdots \quad \frac{\left| \langle \text{``IS''} | \hat{\mathcal{T}}^{(M1)} | 0 \rangle \right|^{2} \colon |c_{2}'|^{2}}{\left| \langle \text{``IV''} | \hat{\mathcal{T}}^{(M1)} | 0 \rangle \right|^{2} \colon |c_{1}'|^{2}} \right\} \mathfrak{E} \mathbf{\hat{a}} \mathbf{\hat{k}} \mathbf{\hat{k}}$$

HF + RPA vs. Exp.

|               |                      |             | M3Y-P5                              |            | Exp.                |
|---------------|----------------------|-------------|-------------------------------------|------------|---------------------|
|               |                      |             | $\hat{V} - \hat{V}^{(\mathrm{TN})}$ | $\hat{V}$  |                     |
| <b>"IS"</b>   | $E_x$                | (MeV)       | 6.87                                | 5.85       | 5.85                |
|               | $B(M1) \uparrow$     | $(\mu_N^2)$ | 4.7                                 | 2.4        | 2.0                 |
| " <b>IV</b> " | $E_x$                | (MeV)       | 9.2 - 10.9                          | 9.2 - 10.9 | 7.1 - 8.7           |
|               | $(ar{E_x})$          |             | (9.9)                               | (9.6)      |                     |
|               | $\sum B(M1)\uparrow$ | $(\mu_N^2)$ | 16.3                                | 19.4       | 16.3 <b>or</b> 18.2 |

 $(D1Sによる結果 ··· "<math>\hat{V} - \hat{V}^{(\mathrm{TN})}$ "の結果と類似)

•  $\begin{cases} "IS" 状態 - low energy \rightarrow 2p-2h 状態の影響小さい \\ "IV" 状態 - 2p-2h 状態との coupling \rightarrow fragmentation, energy shift? (RPA では入らない効果) \end{cases}$ 

•  $\hat{V}^{(\text{TN})} \Rightarrow E(\text{``IS''}) \searrow, E(\text{``IV''}) \nearrow \Rightarrow c'_1 \approx 1, c'_2 \approx 0$ (IS component とIV component の分離が進む)  $\Rightarrow$  適切な $E_x(\text{``IS''}) \& |\langle \text{``IS''} | \hat{\mathcal{T}}^{(M1)} | 0 \rangle |^2$ 

### IV. Summary & future prospect

• E1 energy-weighted sum  $\rightarrow \hat{V}_N$ の性質

— non-locality in charge-exchange part

• low-energy B(M1) distribution (in <sup>208</sup>Pb)

 $\rightarrow$  role of tensor force reconfirmed

- semi-realistic  $\hat{V}_N$  ( $\leftrightarrow$  micro. & phenom.の適切な融合)  $\cdots$  promising
- 課題 ··· 2*p*-2*h* 自由度の考慮 (— 容易でないが重要!) shell modelとの融合? QPM? extended RPA?