Portable NMR polarimeter system for polarized HD target

T. Ohta^a, M. Fujiwara^a, K. Fukuda^b, H. Kohri^a, T. Kunimatsu^a, C. Morisaki^a, S. Ono^b, M. Tanaka^c, K. Ueda^a, M. Uraki^a, M. Utsuro^a, S.Y. Wang^{d,e}, and M. Yosoi^a

^a Research Center for Nuclear Physics (RCNP), Ibaraki, Osaka 567-0047, Japan
^b Kansai University of Nursing and Health Science, Shizuki Awaji 656-2131, Japan
^c Kobe Tokiwa University, Ohtani-cho 2-6-2, Nagata, Kobe 653-0838, Japan
^d Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
^e Department of Physics, National Kaohsiung Normal University, Kaohsiung 824, Taiwan

We have been developing a polarized HD target [1] for future LEPS experiments. Introducing the polarized HD target to the LEPS experiments is very important for various studies, for example, the bump structure found in the $\gamma p \to K^+ \Lambda(1520)$ cross sections [2]. The polarized HD target is produced at RCNP and transported to SPring-8 which is 130 km distant from RCNP. The polarization of the target should be measured at both places by using the same NMR polarimeter system. However, a conventional NMR system is large and heavy for a long-distance transportation. For this purpose, a portable NMR polarimeter system is desired.

We have produced the portable NMR polarimeter system [3] by replacing the devices in the conventional system with the software system with PCI eXtensions for Instrumentation (PXI). Fig. 1 shows a photograph of the portable NMR system. Fig. 2 shows NMR signals observed for hydrogen and fluorine at 1.5 K with an RF frequency of 29.45 MHz. The S/N ratios of the NMR signals are found to be good enough for stable measurements of the polarization of the HD target [3]. We succeeded in downsizing the weight of the NMR system from 80 to 7.1 kg and reducing the cost to 25% as shown in Table 1.

10.0 8.0 6.0 2.0 0.67 0.69 0.71 0.73 0.75 Magnetic field

Figure 1: The portable NMR polarimeter system consisting of a PXI system and a laptop PC.

Figure 2: The NMR signals measured by the portable NMR system. The horizontal axis is the magnetic field.

Table 1: Comparison of weight, size, and cost between the conventional and portable systems.

	Weight	Size	Cost
Conventional system	80 kg	$600 \text{ mm} \times 600 \text{ mm} \times 2100 \text{ mm}$	\$60,000
Portable system	7.1 kg	$250~\mathrm{mm}~\mathrm{x}~200~\mathrm{mm}~\mathrm{x}~200~\mathrm{mm}$	\$15,000

References

- 1. M. Fujiwara *et al.*, Photoproduction experiment with polarized HD target at SPring-8, LEPS/RCNP proposal (2003).
- 2. H. Kohri $et\ al.$, Phys. Rev. Lett. 104 (2010) 172001.
- 3. T. Ohta et al., Nucl. Instr. and Meth. A 633 (2011) 46.