Search for α condensed states by measuring α inelastic scattering under normal kinematic conditions.

KAWABATA Takahiro
Department of Physics, Kyoto University
α Condensed State

α cluster structure is expected to emerge near the α-decay threshold energy in $N = 4n$ nuclei.

The 0^+_2 state at $E_x = 7.65$ MeV in ^{12}C, a famous 3α cluster state, is called “Hoyle state”.

A novel concept to describe the 0^+_2 state is proposed: α Condensation.

α-condensed state where three alpha particles occupy the lowest s-orbit.
Dilute-gas state of alpha particles. Large RMS.
Does similar α condensed state exist in heavier nuclei?

How should we excite Cluster States?

Various reactions were devoted to excite cluster states.

- Cluster-transfer reaction
 - Complex reaction mechanism due to the low incident energy.
 - Small reaction cross section.
 - Limited energy resolution.

- Low-energy resonant capture reaction
 - Sensitive above the cluster-emission threshold only.
 - Coulomb barrier disturbs the reaction near the threshold.

Inelastic scattering can be a complementary probe.

- Simple reaction mechanism at intermediate energies.
- High resolution measurement is possible.
- Sensitive to the entire E_x region.
- Selectivity for the isoscalar natural-parity excitation.
E0 Strengths and α Cluster Structure

Large E0 strength could be a signature of spatially developed α cluster states.

0^+_2 state in 12C: $B(E0; IS) = 121 \pm 9 \text{ fm}^4$
Single Particle Unit: $B(E0; IS)_{s.p.} \sim 40 \text{ fm}^4$

- SM-like compact GS w.f. is equivalent to the CM w.f. at SU(3) limit.
- GS contains CM-like component due to possible alpha correlation.

- SM-like Compact GS.

- Developed Cluster State

Monopole operators excite inter-cluster relative motion.

E0 strength is a key observable to examine α cluster structure.

Inelastic Alpha Scattering

Inelastic α scattering is a good probe for nuclear excitation strengths.

- Simple reaction mechanism
 - Good linearity between $d\sigma/d\Omega$ and $B(\hat{o})$.
 \[\frac{d\sigma}{d\Omega}(\Delta J^\pi) \approx KN|J(q)|^2 B(\hat{O}) \]
 - Folding model gives a reasonable description of $d\sigma/d\Omega$.

- Selectivity for the $\Delta T = 0$ and natural-parity transitions.

- Multiple decomposition analysis is useful to separate ΔJ^π.
 \[\frac{d\sigma_{\text{exp}}}{d\Omega} = \sum_{\Delta J^\pi} A(\Delta J^\pi) \frac{d\sigma}{d\Omega}(\Delta J^\pi)_{\text{calc}} \]

We measured inelastic α scattering to extract IS E0 strengths and to search for the α condensed states.
Condensed States in Heavier $N = 4n$ Nuclei

- α condensed states in 8Be and 12C seem to be established.
- α condensed states in heavier nuclei ($A < 40$) are theoretically predicted.

Short range α-α attraction
Long range Coulomb repulsion

Energy of dilute $N\alpha$ state increases with N. $N\alpha$ are confined in Coulomb barrier.

If such $n\alpha$ condensed states are formed, they should sequentially decay into lighter α condensed states by emitting α particles.

$N\alpha$ decay measurement could be a probe to search for the α condensed state.

α Condensed State in ^{16}O

Energy levels, rms radii, monopole matrix elements and density distribution.

Low lying 0^+ levels of ^{16}O

- 0^+_0: 15.2 MeV
- 0^+_1: 14.0 MeV
- 0^+_2: 13.6 MeV
- 0^+_3: 12.1 MeV
- 0^+_4: 12.1 MeV
- 0^+_5: 12.1 MeV
- 0^+_6: 12.1 MeV

4α cond. state

- $\Gamma (0^+_4)_{\text{OCM}} \sim 0.2$ MeV
- $\Gamma (0^+_5)_{\text{OCM}} < 0.05$ MeV
- $\Gamma (0^+_6)_{\text{OCM}} \approx 0.05$ MeV

<table>
<thead>
<tr>
<th>R_{rms} (fm)</th>
<th>M(E0)(fm²)</th>
<th>M(E0)(fm²) Exp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(0^+1){\text{OCM}}$</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>$(0^+2){\text{OCM}}$</td>
<td>3.0</td>
<td>3.9</td>
</tr>
<tr>
<td>$(0^+3){\text{OCM}}$</td>
<td>3.1</td>
<td>2.4</td>
</tr>
<tr>
<td>$(0^+4){\text{OCM}}$</td>
<td>4.0</td>
<td>2.4</td>
</tr>
<tr>
<td>$(0^+5){\text{OCM}}$</td>
<td>3.1</td>
<td>2.6</td>
</tr>
<tr>
<td>$(0^+6){\text{OCM}}$</td>
<td>5.6</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Large monopole matrix element can be the evidence of cluster states.

T. Yamada, Y. F. et al., PTP120, 1139 (2008).

Previous Measurement of ^{16}O

$^{12}\text{C}(^{16}\text{O},4\alpha+^{12}\text{C})$ reaction was measured under the inverse kinematics.

- $\Delta E_x (^{12}\text{C}) = 350$ keV
- Not direct reaction.
- Angular distribution of $(^{12}\text{C},^{12}\text{C}')$ was not discussed.
- $\theta_{\text{CM}} = 0^\circ$ was not covered.

Kinematics: Normal or Inverse?

Is the inverse kinematics measurement useful to search for the α condensed state?

High resolution measurement at 0° is difficult under the inverse kinematics …

- Energy of recoil α is less than 200 keV.
 \[\Delta E_{\text{recoil}} = 10 \text{ keV for 200-keV } \alpha \text{ to obtain } \Delta E_x(^{16}\text{O}) = 300 \text{ keV.} \]
- Decay α particles are emitted at very forward angles.
 Same emission angle with elastically scattered ^{16}O at $\theta_{\text{CM}} < 8^\circ$.

Graphical Data

- **Graph 1:**
 - Reaction: $^{16}\text{O}(\alpha,\alpha')$
 - Energy: 100 MeV/u
 - Data for $E = 0 \text{ MeV}$, $E = 5 \text{ MeV}$, $E = 10 \text{ MeV}$, $E = 15 \text{ MeV}$, $E = 20 \text{ MeV}$
 - E_{recoil} vs $\theta_{\text{lab}} (\text{deg})$

- **Graph 2:**
 - Reaction: $^{16}\text{O}(\alpha,\alpha')$
 - Energy: 100 MeV/u
 - Inverse Kinematics
 - Elastic Scattering
 - Decay α Particles
 - $\theta_{\text{CM}} < 5 \text{ deg.}$
 - $2\pi \sin \theta \sigma d\Omega (\text{mb/deg})$ vs $\theta_{\text{lab}} (\text{deg})$
Normal Kinematics

High resolution measurement is possible under the normal kinematics.

Decay α measurement under the normal kinematics is still difficult, because the energy of α from $^{16}\text{O}(0^+_6) \rightarrow ^{12}\text{C}(0^+_2) + \alpha$ is 210 keV.

- Range of 210-keV α particles in O$_2$ gas is 5.4 mm·atm.
 → Very thin Oxygen target is needed.

Heavier nuclei might be easier once the a condensed state is established in ^{16}O.
Thin Oxygen Target

Possible thin targets are …

✓ Gas jet target (typical thickness is: $10^{12} - 10^{14}$ cm$^{-2}$)

✓ Window-less gas target with the differential pumping technique. Si detectors should be installed in the gas volume. Thickness should be less than 1 Torr ($\sim 10^{16}$ cm$^{-2}$ ($\sim 1 \mu$g/cm2) for 1-cm target).

$\rightarrow \Delta E = 17$ keV along a 15-cm flight path for 210-keV α.

✓ High intensity beam ($\sim 1 \mu$A) is required to compensate the target thickness.

✓ Beam quality is important for the 0-degree measurement as well as the intensity.
Summary

α Condensed states in heavier nuclei should be searched.

– Alpha inelastic scattering and decay-particle measurement are useful tools.
– Isoscalar E0 strength
– Sequential decay of the α condensed states.

Experimental framework was discussed.

– Inverse kinematic experiment is not suitable to measure the E0 strength and sequential decay.

Possible experimental setup was presented.

– Thin O2 gas target should be introduced.
– Intense and high quality beam should be developed.