Study on ${}^{26m}Al(p,\gamma)$ Reaction at the SNe Temperature

H. Shimizu¹, D. Kahl², H. Yamaguchi¹, K. Abe¹, O. Beliuskina¹, S. M. Cha³, K. Y. Chae³, A. A. Chen⁴, Z. Ge⁵, S. Hayakawa¹, N. Imai¹, N. Iwasa⁶, A. Kim³, D. H. Kim⁷, M. J. Kim³, S. Kubono⁵, M. S. Kawag³, J. Liang⁴, J. Y. Moon⁸, S. Nishimura⁵, S. Oka⁹, S. Y. Park⁷, A. Psaltis⁴, T. Teranishi⁹, Y. Ueno⁹, and L. Yang¹

¹Center for Nuclear Study, Department of Physics, the University of Tokyo, Japan
²School of Physics and Astronomy, the University of Edinburgh, United Kingdom
³Department of Physics, Sungkyunkwan University, Korea
⁴Department of Physics and Astronomy, McMaster University, Canada
⁵RIKEN Nishina Center, RIKEN, Japan
⁶Department of Physics, Tohoku University, Japan
⁷Department of Physics, Ewha Womans University, Korea
⁸Institute for Basic Science, Korea
⁹Department of Physics, Kyushu University, Japan

One of the isotope of aluminum, ²⁶Al, plays an important role in the study on the Galaxy. The γ -ray observatory has been detecting 1.809 MeV β -delayed γ -ray from the ground state of ²⁶Al for more than two decades. Its half life is 7.75×10^5 years and is sufficiently short on the scale of the galactic evolution and long enough to disperse in the interstellar medium. Hence, the abundance of this nuclide is one of the candidate to understand the nucleosynthesis in massive environments such as Wolf-Rayet stars, AGB stars and supernovae.

However, the abundance of ²⁶Al in interstellar medium from the observed flux has been inconsistent with nuclear reaction network calculations. One of the clue to solve this discrepancy is its isomer, ^{26m}Al. Since its spin-parity is 0⁺, it directly decays to the ground state of ²⁶Mg without emitting γ -ray. Despite the difference of the spinparity between the ground state and the isomeric state, they could be under thermal equilibrium in high temperature environments, so that there is a possibility that the calculated flux sinks below the network calculation [1].

Up to now, the experimental data are scarce, and Hauser-Feshbach calculations are used. In order to complement the one of the destructive reaction of ^{26m}Al, we performed the experiment at CNS low-energy radioactive ion beam separator (CRIB) and measured the elastic scattering of ^{26m}Al (p, γ) reaction with the cocktail ^{26g,m}Al RI beam. The experimental condition and the discussion of preliminary result will be presented.

[1] R.C.Runkle, A.E.Champagne and J.Engel (2001) "Thermal Equilibration of $^{26}\mathrm{Al}$ ", The Astrophysical Journal, 446, 970–978