Search for the α -condensed state by measuring the inelastic resonance scattering ${}^{12}C({}^{12}C, {}^{12}C[0_2^+]){}^{12}C[0_2^+]$

K. Sakanashi¹, T. Kawabata¹, Y. Kanada-En'yo², K. Yoshida², K. Inaba², T. Doi², T. Furuno³, A. Sakaue², Y. Fujikawa², S. Okamoto², K. Katayama², Y. Arakawa², S. Enyo², R. Kongo², S. Takagi², Y. Hijikata², R. Matsumoto², T. Mikami², and K. Miyazato²

¹Department of Physics, Osaka University, Toyonaka, Osaka 505-0043, Japan ²Department of Physics, Kyoto University, Kyoto 606-8502, Japan ³Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047, Japan

Alpha particle clustering is an important phenomenon in nuclear physics, especially for light nuclei. It is known that the α cluster structure appears near an α -decay threshold energy due to a strong correlation of four nucleons and relatively weak interaction between α clusters. For example, the 0^+_2 state in ${}^{12}C$, which locates at an excitation energy higher than the 3α -decay threshold by 0.39 MeV, has a spatially developed 3α structure. It is pointed out that this 0^+_2 state is the α condensed state in which all α clusters are condensed to the lowest energy orbit [1]. Generally, nuclear density in most nuclei is saturated around the normal density, but this α condensed state is less dense than normal nuclei [2]. Therefore, the α condensed states are of great interest as a new form of nuclear structure. It is a very natural question whether such an α -condensed state universally exists in the heavier self-conjugate A = 4N nuclei or not. According to a theoretical examination by Yamada et al., the α condensed states exist metastably up to 40 Ca ($N \leq 10$) [3]. Since all of the α clusters in the α condensed states occupy the same 0s orbit, overlaps between the α condensed states in different nuclei are quite large. Thus, the α condensed states prefer to decay into the lighter α condensed states.

In this study, we searched for a 6 α -condensed state which is theoretically predicted at an excitation energy of $E_x = 33.4$ MeV. We populated excited states at $E_x = 32.1$ – 38.9 MeV in ²⁴Mg (²⁴Mg^{*}) by the ¹²C+¹²C resonance scattering using a ¹²C beam at $E_{beam} = 36.5-56.7$ MeV, and detected 6 α particles emitted from the ²⁴Mg^{*} \rightarrow ¹²C(0⁺₂) + ¹²C(0⁺₂) \rightarrow 6 α process.

In this talk, we will report the details about the experiment and the result.

- [1] A. Tohsaki et al., Phys. Rev. Lett. 87, 192501 (2001).
- [2] T. Yamada and P. Schuck, Eur. Phys. J. A 26, 185199 (2005).
- [3] T. Yamada and P. Schuck, Phys. Rev. C 69, 024309 (2004).