Gamow-Teller giant resonance in ¹³²Sn

M. Sasano², J. Yasuda^{1,2}, R. G. T. Zegers^{3,4,5}, H. Baba², D. Bazin³, W. Chao², M. Dozono²,

N. Fukuda², N. Inabe², T. Isobe², G. Jhang^{2,3}, D. Kameda², M. Kaneko^{6,2}, K. Kisamori^{2,7},

M. Kobayashi⁷, N. Kobayashi⁸, T. Kobayashi^{2,9}, S. Koyama^{2,8}, Y. Kondo^{10,2},

A. J. Krasznahorkay¹¹, T. Kubo², Y. Kubota^{2,7}, M. Kurata-Nishimura², C. S. Lee^{2,7}, J. W. Lee¹²,

Y. Matsuda¹³, E. Milman^{2,14}, S. Michimasa⁷, T. Motobayashi², D. Muecher^{2,15,16}, T. Murakami⁶,

T. Nakamura^{10,2}, N. Nakatsuka^{2,6}, S. Ota⁷, H. Otsu², V. Panin², W. Powell², S. Reichert^{2,15},

S. Sakaguchi^{1,2}, H. Sakai², M. Sako², H. Sato², Y. Shimizu², M. Shikata^{10,2}, S. Shimoura⁷,

L. Stuhl², T. Sumikama^{9,2}, H. Suzuki², S. Tangwancharoen², M. Takaki⁷, H. Takeda², T. Tako⁹,

Y. Togano^{10,2,17}, H. Tokieda⁷, J. Tsubota^{10,2}, T. Uesaka², T. Wakasa¹, K. Yako⁷, K. Yoneda² and J. Zenihiro²

¹Department of Physics, Kyushu University, Nishi, Fukuoka 819-0395, Japan

²RIKEN Nishina Center, Hirosawa 2-1, Wako, Saitama 351-0198, Japan

³National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA

⁴Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, Michigan 48824, USA ⁵Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA ⁶Department of Physics, Kvoto University, Kvoto 606-8502, Japan

⁷Center for Nuclear Study, University of Tokyo, Bunkyo, Tokyo 113-0033, Japan

⁸Department of Physics, University of Tokyo, Tokyo 113-0033, Japan

⁹Department of Physics, Tohoku University, Miyagi 980-8578, Japan

¹⁰Department of Physics, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro, Tokyo 152-8551, Japan ¹¹ATOMKI, Institute for Nuclear Research, Hungarian Academy of Sciences, P. O. Box 51, H-4001 Debrecen, Hungary

¹²Department of Physics, Korea University, Seoul 02841, Republic of Korea

¹³Department of Physics, Faculty of Science and Engineering, Konan University, 8-9-1 Higashinada, Kobe, Hyogo 658-8501, Japan

¹⁴Department of Physics, Kyungpook National University, Daegu 702-701, Korea

¹⁵Technical University of Munich, D-85748 Garching, Germany

¹⁶Department of Physics, University of Guelph, Ontario N1G 2W1, Canada

¹⁷Department of Physics, Rikkyo University, Tokyo 171-8501, Japan

Gamow-Teller (GT) transition is one of the basic excitation modes in nuclei and occurs as simultaneous flips of spin and isospin of a nucleon inside a nucleus without changing the spatial wave function of the nucleon, i.e. rotation in spin-isospin channel. In nuclei with a large neutron excess, this transition has a strong collectivity appearing as so-called GT giant resonance (GTGR). The GTGR resonance energy of a nucleus is highly sensitive to a short-range repulsive residual interaction that gives positive energies to the rotation of the nucleus in the spin-isospin channel. In short, the GTGR gives knowledge on how rigid a nuclear matter is in the spin-isospin channel. This unique aspect of the GTGR allows one to obtain an empirical constraint on astrophysical scenarios of neutron stars where pion condensation, a phase transition of nuclear matter in the spin-isospin channel, may occur. In this talk, we present the results of the measurement of the GTGR in ¹³²Sn performed in RIKEN RIBF using the SAMURAI spectrometer. A new experimental technique was employed to measure the (p,n) reaction at intermediate energies with an RI beam in inverse kinematics. A thick target was used to obtain a high luminosity even for RI beams. Through the missing mass spectroscopy, we extracted the GT transition strengths up to a high excitation energy including the GTGR. The so-called Landau Migdal parameter g', which characterizes the strength of the short-range interaction and the critical density of the onset of the pion condensation in nuclear matter, was deduced from the measured GTGR energy in a similar quality as done in stable nuclei, for the first time for a nucleus far from the beta stability line..