RCNP研究会「重イオン蓄積リングの物理」(Sep. 24-25, 2010 at RCNP)

陽子・中性子過剰核散乱の 系統的解析に向けて

古本 猛憲

(京都大学基礎物理学研究所)

板垣 直之 (京都大学基礎物理学研究所) 肥山 詠美子 (理化学研究所) 櫻木 千典 (大阪市立大学・理学研究科)

Motivation

A = 7: ⁷Be, ⁷Li (α + 3N) ⇒ テスト計算 (<u>二体への分解過程、標的核の励起の効果</u>)

A = 8: ⁸B, ⁸Li (α + 3N + N) \Rightarrow Three-body cluster 状態が発達していると考えられる。 \Rightarrow <u>閾値と共鳴状態</u>の準位の関係 ⁸B と ⁸Li で大きく異なる。

Levels of A = 8 *systems*

$$\alpha + t + n$$
 4499.62

J. P. Mitchell, et al., (Phys. Rev. C.82 (2010) 011601(R))

<u>微視的チャネル結合法</u>

チャネル結合方程式

$$\left[T_{R}+V_{\alpha\alpha}(R)-E_{\alpha}\right]\chi_{\alpha}(R)=-\sum_{\beta\neq\alpha}^{N}V_{\alpha\beta}(R)\ \chi_{\beta}(R)$$

チャネル結合方程式に用いられるポテンシャルを、 微視的に(CEG07と遷移密度から)導出する。

$$V_{\alpha\beta}(R) = \int \rho_{\alpha\beta}^{(P)}(r_{1}) \rho_{\alpha\beta}^{(T)}(r_{2}) v_{NN}(\mathbf{s};\rho,E) dr_{1} dr_{2}$$

transition density **CEG07**
$$\mathbf{\overline{B88}}$$
$$\underline{\rho_{ik}(\vec{r})} = \langle \varphi_{i}(\xi) | \sum_{i} \delta(\vec{r}_{i} - \vec{r}) | \varphi_{k}(\xi) \rangle$$
$$\mathbf{Projectile}$$

Target

Transition density of the ⁸B, ⁸Li nuclei

Microscopic α + 3N +N model

- Total wave function
 - $\Psi = \Sigma c_i P^{J\pi} A(\phi_1 \phi_2 \phi_3 \phi_4 \cdots \phi_8)_i$
- Single-particle wave function

$$\varphi_{i} = \left(\frac{2\nu}{\pi}\right)^{\frac{3}{4}} \exp\left[-\nu(\vec{r} - \vec{\zeta_{i}}/\sqrt{\nu})^{2}\right] \chi_{i}$$

spin-isospin part

Central : Volkov No.2 Spin-orbit : G3RS

Important basis states are selected as in stochastic variational method (c.f. Suzuki-Varga)

⁷Be, ⁷Li + ¹²C elastic and quasi-elastic scatterings

⁸B, ⁸Li + ¹²C elastic and quasi-elastic scatterings

Comparison $A = 7 (\alpha + 3N)$ with $A = 8 (\alpha + 3N + N)$ at E/A = 67.8 MeV

回転バンド

Comparison $A = 7 (\alpha + 3N)$ with $A = 8 (\alpha + 3N + N)$ at E/A = 67.8 MeV

Comparison ⁷Be with ⁷Li and ⁸B with ⁸Li (mirror) at E/A = 40.0 and 67.8 MeV

¹⁶O target at E/A = 40.0 and 67.8 MeV

$^{40}Ca \text{ target at } E/A = 40.0 \text{ and } 67.8 \text{ MeV}$

 $^{90}Zr \ target \ at \ E/A = 40.0 \ and \ 67.8 \ MeV$

Summary

- <u>質量数7,8の鏡映核を入射粒子として散乱解析を行った。</u>
 - 1.⁸B,⁸Li 弾性散乱解析
 - ・強くカップルする状態は3+状態であることが分かった。
 - 2. 原子核散乱で見た鏡映核の特性
 - Coulomb potential の違いによる N/F の違い
 - \Rightarrow Fraunhofer-type diffraction で違いが見られた。
 - E/A = 40 MeV で ⁸B, ⁸Li 弾性散乱の cross section が重なる。
 ⇒ 閾値則による違い(対称性の破れ)が散乱で見えている。
 - 3. 標的核依存性 (¹²C ⁹⁰Zr targets)
 - ・標的核が適度に大きいほうが対称性の破れが見えやすい。
 - *ただし、Zが大きすぎるとCoulombが支配的になって 鏡映核の対称性の破れを見るのは難しくなる。

入射核の系統性

