Reaction dynamics of slow collisions in light neutron excess systems

-Unified studies from bounds to continuum in Be isotopes

伊藤 誠

関西大学 システム理工学部 物理応用物理学科

I. Introduction

II. Framework

III. Varieties of structures in ¹²Be and Be isotopes

IV. Enhancements induced by large amplitude motions

V. Summary and feature plan

Cluster structures in 4N nuclei

IKEDA Diagram

S]

PRC61,62 (2000)

(N,Z): Two Dimensions

Interests from the viewpoints of large amplitude collective motions

Reactions are extreme limits of large amplitude collective motions !

Subjects

- 1. Pursuit of structural changes over a wide region in AESs
- 2. Investigation of reaction path in AESs and enhancements in connection to AESs structures

Today's report

- 1. Global features of structures in ¹²Be and Be isotopes
- 2. Non-adiabatic phenomena in large amplitude reactions

Extension of microscopic cluster model (Test calculation for ¹⁰Be)

Global behaviors of Level Crossings in Be isotopes

Level Crossings in ^{12,14}Be= α + α +XN (X=2,6)

¹⁰Be (0+) case : M.I., PLB636, 236 (2006)

Nuclea breakup : ${}^{10}Be + {}^{12}C \Rightarrow {}^{10}Be(0^+ \text{ conti.}) + {}^{12}C (CDCC \text{ cal.})$

Reaction path in ¹⁰Be \rightarrow [×]He + ^yHe Breakup reaction (Positive Parity)

 $0_1^+ \rightarrow 0_3^+$ is the dominant transition.

Non-adiabatic path is main process.

$\alpha + {}^{6}\text{He}_{g.s.} \Rightarrow \alpha + {}^{6}\text{He}(2_{1}^{+}) \text{ scattering (Negative Parity)}$

Two AESs are almost degenerated due to correlations \Rightarrow Crossing occurs at inner region !

Lowest minimum smoothly connected to $\alpha + {}^{8}\text{He}_{g.s.} \Rightarrow$ Formation of adiabatic conjunction

Monopole transition of ¹²Be

Adiabatic conjunction enhances the monopole transition !

Contents of present report

- 1. Unified studies form bounds to continuums in Be isotopes
- 2. Reactions with large amplitudes in connection to adiabatic energy surfaces

Results

1. There appears a wide variety of structures in excited states (Cluster + excess ≥)Enhancements occur depending on the structures of AESs.

- ¹⁰Be : Non-adiabatic path is dominant in monopole breakup and slow scattering.
- ¹²Be : Adiabatic path is dominant in monopole b.u. (Formation of conjunction)

Feature studies

Recently, we have just succeeded in extending the model to general two centers. Extension to SD shell $\Rightarrow O=\alpha+^{12}C+XN$, $Ne=\alpha+^{16}O+XN$

Generalities and Specialities : hybrid structures of clusters + excess neutrons in O and Ne

Systematics based on the Cluster Picture

¹²Be=⁶He+⁶He, α +⁸He is a self conjugate when atomic p-h are exchanged.

 \Rightarrow This is a special nucleus in even Be isotopes

