蓄積リングにおける アイソスカラー型非弾性散乱

京都大学大学院理学研究科 川畑 貴裕

Motivation

- ・これまでRCNPを中心に展開してきたのは非弾 性散乱による核構造の研究。特に Low-q 領域。
 - 初期…陽子・重陽子を用いたスピンアイソスピン励起 の研究
 - ΔS, ΔTの自由度があると、モードの切り分けが大変。
 - 現在… αを用いたクラスター励起の探索
 - 必ずしもクラスター状態に対する選択性はないが、
 意外に上手く行っている。
 - ΔSとΔTを考えなくてもよいのが何と言っても楽チン。
- ・蓄積リング計画において発展させることはでき
 ないか
 ?
 - 逆運動学条件化でのLow-q測定は、蓄積リング+ internal target でのみ可能!。

アイソスカラー型非弾性散乱でできること

- ・クラスター状態の探索
 - クラスター崩壊閾値近傍がターゲット。
 - 励起強度だけでなく、崩壊様式も重要。
 - 通常標的では、閾値近傍の粒子崩壊の測定はほぼ不可能。
 - 不安定核への展開を強く意識。分子的状態の探索。
 - 閾値より高いエネルギー領域はほぼ手付かず。
- ・ 圧縮性モードの探索 → 伊藤さん(東北大)の講演
 - ISGMR, ISGDR
 - 標的作成の問題から開放される
 - 化学的性質、存在比を心配しなくてもよい。
 - 希ガス、^{16, 18}O, ⁴⁸Ca, ^{204, 206, 210}Pb, ²³⁸U (Sn安定同位体はすでにフルコンプしてしまってはいるが....)

How should we excite Cluster States?

Various reactions were devoted to excite cluster states.

✓ Cluster-transfer reaction

Cluster transfer

☺ Complex reaction mechanism due to the low incident energy.

Capture

- \odot Small reaction cross section.
- $\ensuremath{\mathfrak{S}}$ Limited energy resolution.
- ✓ Low-energy resonant capture reaction
 - $\ensuremath{\mathfrak{S}}$ Sensitive above the cluster-emission threshold only.
 - $\ensuremath{\mathfrak{S}}$ Coulomb barrier disturbs the reaction near the threshold.

Inelastic scattering can be a complementary probe.

- © Simple reaction mechanism at intermediate energies.
- [©] High resolution measurement is possible.
- \bigcirc Sensitive to the entire E_x region.
- © Selectivity for the isoscalar natural-parity excitation..

E0 Strengths and α Cluster Structure

Large E0 strength could be a signature of spatially developed α cluster states. T. Kawabata *et al.*, Phys. Lett. B **646**, 6 (2007).

> 0^+_2 state in ¹²C: B(E0; IS) = $121 \pm 9 \text{ fm}^4$ Single Particle Unit: B(E0; IS)_{s. p.} ~ 40 fm⁴

✓ SM-like compact GS w.f. is equivalent to the CM w.f. at SU(3) limit.
✓ GS contains CM-like component due to possible alpha correlation.

E0 strength is a key observable to examine α cluster structure.

Cluster State in ¹¹B

A dilute $2\alpha + t$ cluster state is excited by E0 transition with B(E0;IS) = 96 ± 16 fm⁴.

- 3/2⁻₃ state in ¹¹B is strongly excited by the E0 transition in the (d,d') reaction.
- Analogies between the $3/2_{3}^{-}$ state and the 0_{2}^{+} state in ${}^{12}C$ (dilute-gas-like 3α cluster state) have been observed.
 - Similar excitation energies and E0 strengths.
 - \succ Locates near the α decay thresholds.
 - \succ Not predicted in SM calculations.
- AMD (VAP) successfully describes the $3/2_{3}^{-}$ state with a dilute $2\alpha + t$ cluster wave function.

E0 measurement is a new useful spectroscopic tool to search for α cluster states.

α Cluster Structures in Be Isotopes

Excitation energy

AMD Prediction:

Excess neutrons drastically changes cluster structures.

α Cluster Structures in ¹²Be

Candidates for the Atomic and Molecular states were observed.

²²Ne における分子的状態

²¹Fにおける分子的状態

F同位体における分子的状態の変化

蓄積リングにおけるクラスター状態探索

- ・アイソスカラー型非弾性散乱 (α ?d?)
 - ◎励起強度(EO, E2)の精密測定。
 - ☺断面積は1—100 mb/Sr。
 - ☺薄い標的を使うことで低エネルギー崩壊粒子を 原理的には測定可能。
 - ⊗選択性には乏しい。
- ・クラスター移行反応
 - ◎基底状態におけるクラスター相関に有力?
 - ⊗断面積は 1—100 µb/Sr。
 - ◎クラスターの核内運動量分布に対する感度があるか?
- ・クラスターノックアウト反応

◎クラスター移行に比べ核内運動量決定には有効かも。
 ◎400 MeV/u ぐらいはエネルギーが欲しい所。

不安定核ビームを用いた非弾性散乱

Inverse kinematics must be employed in RI-beam experiments.

運動学的条件

- ・実験室系において、30-90度を覆う必要がある。
- ・崩壊粒子を測定するなら磁石のあとに検出器が必要。
- ・検出エネルギーは ほぼO-50 MeV ぐらい。

前方角度ではエネルギー分解能が重要。

- 300 keVの分解能を得るのに必要なエネルギー分解能@θ_{cm}=1° 170 keV の α に対して 10 keV @ q = 0.19 fm⁻
- ・後方角度では角度分解能が重要。

- 300 keV の分解能を得るのに ~1 mrad の角度分解能が必要。

基底状態におけるクラスター相関

Sizable E0 strengths show existence of cluster correlation in GS.

Cluster component (CM) should exist in the GS wave function.

Momentum Dist. of α should be a good measure of α correlation in GS.

ノックアウト反応

Momentum dist. of α in GS can be determined by measuring α knock-out reactions.

✓ Momentum Dist. of α could be a measure of cluster correlation in GS.
✓ α-cluster correlation should enhance α knock-out cross sections.
✓ Test experiment on stable nuclei might be needed.

収量見積もり

- 1 mb/Sr, ΔΩ= 1 mSr を仮定すると、
 10⁻² cps 得るのに、L=10²⁸ cm⁻²sec⁻¹必要。
- ·標的厚は 10¹⁴ cm⁻² ぐらい?
- ・繰り返しを10⁶ sec⁻¹と仮定すると10⁸個必要。
 - 無理?
- · 厚い標的。大立体角(~2 π)を覆う検出器が必要。
 - それって、GSIのEXLそのもの?

まとめ

- 蓄積リング計画を想定して、クラスター物理が どう展開しうるかを検討してみた。
- アイソスカラー型非弾性散乱
 - 低エネルギー反跳粒子の検出には、蓄積リングと内 部標的の組み合わせが有効。
 - 安定線からどれほど遠くへ行けるか?
 - 崩壊粒子を測るなら、ひと工夫いる。
- ノックアウト反応
 - 基底状態をプローブするのに有効。
- 薄い標的ゆえ、統計の問題は頭が痛いところ。